
Department of Informatics
University of Fribourg, Switzerland

Complex Job Shop Scheduling:
A General Model and Method

Thesis

presented to the Faculty of Economics and Social Sciences
at the University of Fribourg, Switzerland,

in fulfillment of the requirements for the degree of
Doctor of Economics and Social Sciences by

Reinhard Bürgy
from Gurmels (FR)

Accepted by the Faculty of Economics and Social Sciences
on February 24th, 2014 at the proposal of

Prof. Dr. Heinz Gröflin (first advisor)
Prof. Dr. Marino Widmer (second advisor)

Prof. Dr. Dominique de Werra (third advisor)

Fribourg, 2014

The Faculty of Economics and Social Sciences at the University of Fribourg neither
approves nor disapproves the opinions expressed in a doctoral thesis. They are to
be considered those of the author. (Decision of the Faculty Council of January 23rd,
1990).

III

To my wife Emmi and
our precious daughter Saimi

ACKNOWLEDGEMENTS

This thesis would not have been possible without the countless contributions of many
people, to whom I wish to express my sincerest gratitude. In particular, I am greatly
indebted to:

My thesis supervisor Prof. Heinz Gröflin, for the opportunity to work in the area of
Operations Research and to discover the fascinating world of scheduling. This thesis
would not have been possible without his enthusiastic, acute, illuminating, patient
support and guidance. His integrity and insights to education and science will always
be a source of inspiration for me.

Prof. Marino Widmer and Prof. Dominique de Werra, for kindly accepting to be
reviewers of my thesis.

Tony Hürlimann, not only for providing his excellent mathematical modeling language
LPL, but also for many insightful discussions throughout the last years.

Prof. Pius Hättenschwiler and his former collaborators Matthias Buchs and Michael
Hayoz for the precious time I could spend with them as an undergraduate assistant.
Their encouraging guidance let me gain priceless experience and knowledge.

Ivo Blöchliger, Christian Eichenberger, Andreas Humm, Stephan Krenn, Antoine
Legrain, Marc Pouly and Marc Uldry for their friendly support.

My parents Bernadette and Rudolf and my sister Stefanie, for their love and unfal-
tering support and encouragement. Their warm generosity and precious values will
always be an example to me.

My wife Emmi, for being with me. With all my heart, I thank you for your presence,
patience, warmth and love.

ABSTRACT

Scheduling is a pervasive task in planning processes in industry and services, and
has become a dedicated research field in Operations Research over the years. A
core of standard scheduling problems, models and methods has been developed, and
substantial progress has been made in the ability to tackle these difficult combinatorial
optimization problems.

Nevertheless, applying this body of knowledge is often hindered in practice by the
presence of features that are not captured by the standard models, and practical
scheduling problems are often treated ad-hoc in their application context. This “gap”
between theory and practice has been widely acknowledged also in scheduling prob-
lems of the so-called job shop type. This thesis aims at contributing to narrow this
gap.

A general model, the Complex Job Shop (CJS) model, is proposed that includes a
variety of features from practice, including no (or limited number of) buffers, routing
flexibility, transfer and transport operations, setup times, release times and due dates.
The CJS is then formulated as a combinatorial problem in a general disjunctive graph
based on a job template and an event-node representation.

A general solution approach is developed that is applicable to a large class of CJS
problems. The method is a local search heuristic characterized by a job insertion
based neighborhood and named JIBLS (Job Insertion Based Local Search). A key
feature of the method is the ability to consistently and efficiently generate feasible
neighbor solutions, typically by moving a critical operation (keeping or changing the
assigned machine) together with other operations whose moves are “implied”. For
this purpose, the framework of job insertion with local flexibility, introduced in [45]
and the insertion theory developed by Gröflin and Klinkert [42] are used. The meta-
heuristic component of the JIBLS is of the tabu search type.

The CJS model and the JIBLS method are validated by applying them to a selection
of complex job shop problems. Some of the selected problems have been studied
by other authors and benchmarks are available, while the others are new. Among
the first are the Flexible Job Shop with Setup Times (FJSS), the Job Shop with

VIII

Transportation (JS-T) and the Blocking Job Shop (BJS), and among the second
are the Flexible Blocking Job Shop with Transfer and Setup Times (FBJSS), the
Blocking Job Shop with Transportation (BJS-T) and the Blocking Job Shop with
Rail-Bound Transportation (BJS-RT). Of particular interest is the BJS-RT, where
the transportation robots interfere with each other, which is, to our knowledge, the
first generic job shop scheduling problem of this type.

For the problems with available benchmarks it is shown that the JIBLS is compet-
itive with the best (often problem-tailored) methods of the literature. Moreover, the
JIBLS appears to perform well also in the new problems and provides first benchmarks
for future research on these problems.

Altogether, the results obtained provide evidence for the broad applicability of the
CJS model and the JIBLS, and for the good performance of the JIBLS compared to
the state of the art.

CONTENTS

1. Introduction 1
1.1. Scheduling . 1
1.2. Some Scheduling Activities in Practice 2

1.2.1. Scheduling in Production Planning and Control 2
1.2.2. Project Scheduling . 5
1.2.3. Workforce Scheduling . 5
1.2.4. Scheduling Reservations and Appointments 5
1.2.5. Pricing and Revenue Management 6

1.3. Some Generic Scheduling Problems . 6
1.3.1. The Resource-Constrained Project Scheduling Problem 6
1.3.2. The Machine Scheduling Problem 7
1.3.3. The Classical Job Shop Scheduling Problem 8

1.4. Extensions of the Classical Job Shop 9
1.4.1. Setup Times . 9
1.4.2. Release Times and Due Dates 10
1.4.3. Limited Number of Buffers and Transfer Times 11
1.4.4. Time Lags and No-Wait . 12
1.4.5. Routing Flexibility . 13
1.4.6. Transports . 14

1.5. Overview of the Thesis . 14

I. Complex Job Shop Scheduling 19

2. Modeling Complex Job Shops 21
2.1. Introduction . 21
2.2. Some Formulations of the Classical Job Shop 22

2.2.1. A Disjunctive Programming Formulation 22
2.2.2. A Mixed Integer Linear Programming Formulation 22

X Contents

2.2.3. A Disjunctive Graph Formulation 23
2.2.4. An Example . 23

2.3. A Generalized Scheduling Model . 24
2.3.1. A Disjunctive Programming Formulation 25
2.3.2. A Disjunctive Graph Formulation 25

2.4. A Complex Job Shop Model (CJS) . 27
2.4.1. Building Blocks of the CJS Model and a Problem Statement . 27
2.4.2. Notation and Data . 28
2.4.3. A Disjunctive Graph Formulation 30
2.4.4. An Example . 32
2.4.5. Modeling Features in the CJS Model 34

3. A Solution Approach 37
3.1. Introduction . 37
3.2. The Local Search Principle . 38

3.2.1. The Local Search Principle in the Example 38
3.2.2. The Job Insertion Graph with Local Flexibility 41

3.3. Structural Properties of Job Insertion 42
3.3.1. The Short Cycle Property . 42
3.3.2. The Conflict Graph and the Fundamental Theorem 47
3.3.3. A Closure Operator . 48

3.4. Neighbor Generation . 53
3.4.1. Non-Flexible Neighbors . 53
3.4.2. Flexible Neighbors . 54
3.4.3. A Neighborhood . 55

3.5. The Job Insertion Based Local Search (JIBLS) 56
3.5.1. From Local Search to Tabu Search 56
3.5.2. The Tabu Search in the JIBLS 57

II. The JIBLS in a Selection of CJS Problems 61

4. The Flexible Job Shop with Setup Times (FJSS) 63
4.1. Introduction . 63
4.2. A Literature Review . 63
4.3. A Problem Formulation . 65
4.4. The FJSS as an Instance of the CJS Model 65
4.5. A Compact Disjunctive Graph Formulation 66
4.6. Specifics of the Solution Approach . 67

4.6.1. The Closure Operator . 67
4.6.2. Feasible Neighbors by Single Reversals 68
4.6.3. Critical Blocks . 70

4.7. Computational Results . 71

5. The Flexible Blocking Job Shop with Transfer and Setup Times (FBJSS) 79
5.1. Introduction . 79

Contents XI

5.2. A Literature Review . 80
5.3. A Problem Formulation . 80
5.4. The FBJSS as an Instance of the CJS Model 81
5.5. Computational Results . 81
5.6. From No-Buffers to Limited Buffer Capacity 89

6. Transportation in Complex Job Shops 95
6.1. Introduction . 95
6.2. A Literature Review . 96
6.3. The Job Shop with Transportation (JS-T) 98

6.3.1. A Problem Formulation . 98
6.3.2. Computational Results . 99

6.4. The Blocking Job Shop with Transportation (BJS-T) 104
6.4.1. A Problem Formulation . 104
6.4.2. Computational Results . 104

7. The Blocking Job Shop with Rail-Bound Transportation (BJS-RT) 109
7.1. Introduction . 109
7.2. Notation and Data . 110
7.3. A First Problem Formulation . 111

7.3.1. The Flexible Blocking Job Shop Relaxation 111
7.3.2. Schedules with Trajectories . 112

7.4. A Compact Problem Formulation . 113
7.4.1. The Feasible Trajectory Problem 114
7.4.2. Projection onto the Space of Schedules 118

7.5. The BJS-RT as an Instance of the CJS Model 119
7.6. Computational Results . 120
7.7. Finding Feasible Trajectories . 124

7.7.1. Trajectories with Variable Speeds 124
7.7.2. Stop-and-Go Trajectories . 130

8. Conclusion 137

Bibliography 139

ACRONYMS

BJS Blocking Job Shop

BJSS Blocking Job Shop with Transfer and Setup Times

BJS-RT Blocking Job Shop with Rail-Bound Transportation

BJS-T Blocking Job Shop with Transportation

CJS Complex Job Shop

JS Job Shop

JSS Job Shop with Setup Times

JS-T Job Shop with Transportation

FBJS Flexible Blocking Job Shop

FBJSS Flexible Blocking Job Shop with Transfer and Setup Times

FJS Flexible Job Shop

FJSS Flexible Job Shop with Setup Times

FNWJS Flexible No-Wait Job Shop

FNWJSS Flexible No-Wait Job Shop with Setup Times

JIBLS Job Insertion Based Local Search

MS Machine Scheduling

MIP Mixed Integer Linear Programming

MPS Master Production Schedule

MRP Material Requirement Planning

MRP II Manufacturing Resource Planning II

NWJS No-Wait Job Shop

NWJSS No-Wait Job Shop with Setup Times

NWJS-T No-Wait Job Shop with Transportation

RCPS Resource-Constrained Project Scheduling

SCP Short Cycle Property

CHAPTER 1

INTRODUCTION

The topic of the thesis, complex job shop scheduling, is introduced in this chapter as
follows. Section 1.1 describes the concept of scheduling. Section 1.2 presents common
scheduling activities in practice. Some generic scheduling problems are specified in
Section 1.3, starting with the resource-constrained project scheduling problem, and
specializing it to the machine scheduling problem and the classical job shop scheduling
problem, which is the basic version of the problems treated in this thesis. A variety
of complexifying features that arise in practice and are not taken into account in the
classical job shop are discussed in Section 1.4. Finally, Section 1.5 gives an overview
of the thesis.

This chapter is mainly based on the operations management textbooks of Jacobs et
al. [24] and Stevenson [108], and on the scheduling textbooks of Baker and Trietsch
[7], Blazewicz et al. [11], Brucker and Knust [17] and Pinedo [95, 96].

1.1. Scheduling

Schedules are part of our professional and personal life. They answer the question
of knowing when specific activities should happen and which resources are used. We
mention just a few examples: bus schedules, also called bus timetables, contain ar-
rival and departure times for each bus and bus stop; school timetables consist of the
schedule for each class indicating lessons, teachers, rooms and time; project sched-
ules comprise start and finish times of their activities; tournament schedules indicate
which teams play against each other at which time and location; production sched-
ules provide information on the orders stating when they should be executed on which
equipment.

The term scheduling refers to the process of generating a schedule, which is com-
monly described as follows. The objects that are scheduled are called activities.
Activities are somehow interrelated by so-called technological restrictions, e.g. some

2 1.2. SOME SCHEDULING ACTIVITIES IN PRACTICE

activities must be finished before others can start. For its execution each activity
needs some resources which may be chosen from several alternative resources. The
resources typically have limited capacity. A schedule consists of an allocation of re-
sources and a starting time for each activity so that the capacity and technological
restrictions are satisfied. The goal in scheduling is to find an optimal schedule, i.e.
a schedule that optimizes some objective. The objective is typically related to time,
for example minimizing the makespan, i.e. the overall time needed to execute all
activities, minimizing the throughput times or minimizing the setup times.

Scheduling is performed in every organization. It is the final planning step before
the actual execution of the activities. Hence, it links the planning and execution
phases. While a short time horizon is often considered, detailed schedules are needed
long before their actual execution in some industries (e.g. in the pharmaceutical
sector). As future is uncertain, schedules may have to be revised quite frequently, for
example due to changes in the shop floor or new order arrivals. Typically, scheduling
is done over a rolling time horizon, the earlier part of the schedule being frozen and
the remaining part being rescheduled.

Schedules are sometimes generated in an ad-hoc, rather informal way, using e.g.
rules of thumb and blackboards. However, a systematic approach is needed for many
scheduling problems in order to be able to cope with its complexity. Models and
information systems may support the decision makers, allowing to find good or opti-
mal schedules. Two types of models can be distinguished: descriptive models offering
what if analyses and optimization models attempting to answer what’s best. The
models may be embedded in information systems that range from simple spread-
sheets of restricted functionality to elaborate decision support systems that offer var-
ious (graphical) representations of the models and solutions, interaction of the users
and collaborative decision making. Which level of support is needed mainly depends
on the difficulty and importance of the scheduling problem.

1.2. Some Scheduling Activities in Practice

In this section, some scheduling activities commonly arising in practice are described.

1.2.1. Scheduling in Production Planning and Control

A typical scheduling task in manufacturing companies with a make to stock strategy
concerns production planning and control, for instance in a Manufacturing Resource
Planning II (MRP II) approach, which is depicted in Figure 1.1 and explained here
briefly.

MRP II is hierarchically structured. At the top level, it comprises the following
three phases: i) master planning, ii) detailed planning, and iii) short term planning
and control.

Master planning considers a long term planning horizon (i.e. typically up to a
year) and consists of sales and operations planning and master scheduling. Sales and
operations planning establishes a sales plan and a production plan. On an aggregated

CHAPTER 1. INTRODUCTION 3

Sales & opera-
tions planning

Resource require-
ment planning

Master scheduling
Rough-cut ca-

pacity planning

Material require-
ment planning

Capacity require-
ment planning

Scheduling

Shop floor control

Aggregated production plan

Master production schedule

Planned orders

Released orders

L
o
n
g

te
rm

:
m

a
st

er
p
la

n
n
in

g
M

ed
iu

m
te

rm
:

d
et

a
il
ed

p
la

n
n
in

g

S
h
o
rt

te
rm

:
sh

o
rt

te
rm

p
la

n
-

n
in

g
a
n
d

co
n
tr

o
l

Figure 1.1.: Production planning and control phases according to MRP II, adapted from
Schönsleben [102]. Tasks are depicted in rounded boxes. The lines indicate
the exchange of information between the tasks.

4 1.2. SOME SCHEDULING ACTIVITIES IN PRACTICE

level they describe the expected demands and the quantities that should be produced
(or bought) for each product family and time unit. Resource requirements are also
considered when establishing the production plan, looking at aggregated resources and
focusing on critical resources. Based on the aggregated production plan, inventory
stock levels and stock policies, the Master Production Schedule (MPS) is established
in the master scheduling, stating the needed quantity for each end product and time
period of the planning horizon. Feasibility of the MPS is considered in rough-cut
capacity planning. If capacities are not sufficient, the MPS may be revised.

The detailed planning phase links the master planning with short term planning and
control. It considers a medium term planning horizon (i.e. typically some months)
and consists of the Material Requirement Planning (MRP) and the capacity require-
ment planning. Based on the MPS, bills of material, inventory stock levels and
production lead time estimations, the MRP determines the needed quantity to fulfill
the MPS for each component (raw material, parts, subassemblies) and time period.
The outputs of this phase are planned (production and purchase) orders. Capacity
requirement planning checks if enough capacity is present to produce the orders as
planned. If capacities are not sufficient, the planning may be revised or capacities
may be adjusted.

The final planning phase consists of scheduling the planned orders for the next days
and weeks. A fine-grained schedule is established, determining the execution time and
the assigned resources for each processing step of the planned orders. The schedule
must be feasible; particularly, it must satisfy the capacity restrictions. The capacities
of the resources are considered on a fine-grained level, e.g. a resource can execute at
most one order at any time. To guarantee feasibility, the characteristic features of the
production system must be considered in scheduling.

The outputs of the scheduling phase, called released orders, are then used in the
shop floor to control the actual production.

Note that feedbacks from a phase to previous phases are common as indicated by
the dashed lines in Figure 1.1. For example, unexpected events in the shop floor,
such as machine failures or quality problems, may force to reschedule some orders.
Minor problems may be dealt with at the control level. Whenever encountering major
problems, the control level feeds back the inputs to the scheduling and a new schedule
is generated.

At first glance, the decisions in scheduling appear to have a limited scope com-
pared to, for example, system design decisions and longer term planning decisions.
This view does not reflect the high impact of scheduling in production planning and
control. In fact, good scheduling may lead to cost reductions and a greater flexibility
in previous planning phases, such as working with less machines or accepting more
customer orders, and bad scheduling may lead to due date violations and idle times
so that costly actions are needed, such as the purchase of new machines or over-
time work. Furthermore, scheduling may also reveal problems in the system design
such as bottlenecks and problems in the longer term planning such as too optimistic
production lead time and due date estimations.

CHAPTER 1. INTRODUCTION 5

Several trends, including mass customization and the adoption of complex auto-
mated production systems, suggest that the importance and difficulty of scheduling
problems in production planning will increase in the future.

1.2.2. Project Scheduling

Projects are unique, one-time operations set up to achieve some objectives given a
limited amount of resources such as money, time, machines and workers.

Projects arise in every organization. Typical examples are the development of
a product, the construction of a factory and the development and integration of
software.

The management of a project consists in planning, controlling and monitoring the
project so that quality, time, cost and other project requirements are met. Important
aspects in project planning include breaking down the project into smaller compo-
nents, such as sub-projects, tasks, work packages and activities, and establishing a
schedule of the project.

Scheduling a project consists in assigning starting times to all activities and assign-
ing resources to the activities so that a set of goals are achieved and all constraints are
satisfied. The goals and constraints are typically related to time, resources or costs.
For example, the project duration may be minimized, the activities are interrelated,
e.g. by precedence constraints, and can have deadlines, a smooth resource utilization
may be sought, and total costs may be minimized.

1.2.3. Workforce Scheduling

In many organizations, a work plan for the work force must be established, determin-
ing for all workers when they are working and what they are working on. The goal
may be to minimize costs.

The workers have to be scheduled so that the needed demand is met, e.g. enough
workers are assigned to execute the production plan or to serve the customers. A
variety of specific working constraints make the problem different from other schedul-
ing problems. A machine may be used during the whole day and seven days a week.
Workers, however, have specific working restrictions, such as a work time limit per
day and week, and regulations on breaks and free days.

1.2.4. Scheduling Reservations and Appointments

In the service industry, services are sometimes requested and reserved prior to their
consumption. Besides decisions on the timing and the allocation of resources, the
reservation process allows controlling the acceptance of the requests.

Two main types of scheduling problems are distinguished. The first type, called
reservation scheduling, occurs if the customers have no or almost no flexibility in
time, i.e. the time of the service consumption is fixed. The main decision is whether
to accept or deny a service request, and the objective is often to maximize resource

6 1.3. SOME GENERIC SCHEDULING PROBLEMS

utilization. Such types of decisions are quite common in many sectors including the
transportation industry (car rentals, air and train transportation) and hotels.

The second type, called appointment scheduling, consists of scheduling problems
where the customers have more flexibility in time. The main decision is the timing
of the service. Appointment scheduling problems are common in practice, e.g. for
business meetings, appointments at the doctor’s office and at the hairdresser.

In both types of problems, cancellations and customers that do not show up or
show up late must be taken into account, increasing the complexity of the problem.

1.2.5. Pricing and Revenue Management

In an integrated scheduling approach, service requests are not just accepted or denied,
but variable pricing is established to control demand. The prices are typically set by
analyzing specifics of the request, left capacities and demand forecasts. This so-called
tactical pricing leads to different prices for the same or similar services. An increase
of the profit, better resource utilization and the gain of new customers are some of
the goals of tactical pricing.

While not being a standard technique in manufacturing, tactical pricing is com-
monly used in the service industry. Well-known examples are the pricing of flight
tickets and hotel accommodations. For example, a flight request of a customer three
days before departure is likely to be priced higher than the same request made three
months earlier.

When services are requested prior to consumption, pricing and reservation schedul-
ing may be combined, forming so-called revenue management problems. These prob-
lems are well-known in the airline and hotel industries.

Tactical pricing is also present in sectors with no service reservation such as in
supermarkets and coffee shops. The prices may depend on the channels (e.g. are
cheaper through the internet), the time of consumption (e.g. the coffee is cheaper in
the morning), or product variations are created (e.g. budget or fine food lines).

1.3. Some Generic Scheduling Problems

As described in the previous section, scheduling is a pervasive activity in practice.
In scheduling theory, a core of generic scheduling problems, models and methods
has been developed for solving these problems. In this section we introduce some
generic scheduling problems, starting with the resource-constrained project scheduling
problem, and specializing it to the machine scheduling problem and the classical job
shop scheduling problem.

1.3.1. The Resource-Constrained Project Scheduling Problem

A general scheduling problem is the Resource-Constrained Project Scheduling (RCPS)
problem, which can be specified as follows. Given is a set of activities I and a set
of resources R. Each resource r ∈ R is available at any time in amount Br. Each

CHAPTER 1. INTRODUCTION 7

activity i ∈ I requires an amount bri of each resource r ∈ R during its non-preemptive
execution of duration di ≥ 0. Some activities must be executed before others can
start. These so-called precedence constraints are given by a set P of pairs of activities
(i, j), i, j ∈ I, where i has to be completed before j can start. The objective is to
specify a starting time αi for each activity i ∈ I so that the described constraints are
satisfied and the project duration is minimized.

Introduce a fictive start activity σ and a fictive end activity τ and let I+ = I∪{σ, τ}.
Activities σ and τ are of duration 0 and must occur before, respectively after all
activities of I. Then, the RCPS problem can be formulated as follows:

minimize ατ (1.1)

subject to:

αi − ασ ≥ 0 for all i ∈ I, (1.2)

ατ − αi ≥ di for all i ∈ I, (1.3)

αj − αi ≥ di for all (i, j) ∈ P, (1.4)

For all r ∈ R :∑
i∈I:αi≤t≤αi+di

bri ≤ Br at any time t, (1.5)

ασ = 0. (1.6)

Any feasible solution α ∈ RI+ is called a schedule. The starting time ασ is set to
0 (1.6) and ατ reflects the project duration, which is minimized (1.1). Constraints
(1.2), (1.3) and (1.4) ensure that all activities are executed in the right order between
start and end. The capacity constraints (1.5) ensure that at any time, the activities
in execution require no more of resource r than available.

Clearly, the capacity constraints (1.5) are not tractable in this form. Other, more
tractable versions exist (see e.g. Brucker and Knust [17]). However, regardless of the
formulation, the RCPS problem is a difficult problem to solve.

1.3.2. The Machine Scheduling Problem

An important special type of RCPS is the Machine Scheduling (MS) problem, where
each resource r ∈ R has capacity Br = 1 and each activity has a requirement bri = 0
or bri = 1 for each r ∈ R. Consequently, a resource is either free or occupied by
an activity, and for any two distinct activities i, j needing a same resource r, i must
precede j or vice versa.

Let Q be a set containing all unordered pairs {i, j} of distinct operations i, j ∈ I
needing a same resource, i.e. for some r ∈ R, bri = brj = 1. Then, the capacity
constraints (1.5) can be rewritten in the substantially simpler form of disjunctive
constraints:

αj − αi ≥ di or αi − αj ≥ dj for all {i, j} ∈ Q, (1.7)

8 1.3. SOME GENERIC SCHEDULING PROBLEMS

and the MS problem can be formulated as a disjunctive program by (1.1)-(1.4), (1.6)
and (1.7).

As early studies of the MS problem were in an industrial context, the resources are
called machines and the activities are operations. These terms have become standard
and will be used in this thesis, although a resource might not be a machine but any
other processor, such as a buffer or a mobile device. In line with common notation,
we use letter M for the set of machines (instead of letter R).

1.3.3. The Classical Job Shop Scheduling Problem

An important special type of MS is the classical Job Shop (JS) problem, which has
the following features:

• Any operation i ∈ I needs exactly one machine, say mi ∈M , for its execution.
Consequently, the set Q contains all unordered pairs {i, j} with i, j ∈ I, i 6= j
and mi = mj .

• The set I of operations is partitioned into a set of jobs J : A job J ∈ J is a set
of operations {i : i ∈ J} and each operation i ∈ I is in exactly one job J ∈ J .

• The set of operations of each job J ∈ J is ordered in a sequence, i.e. {i : i ∈ J}
is sometimes referred to as the ordered set {J1, J2, . . . , J|J|}, Jr denoting the
r-th operation of job J .

• The operations of a job J ∈ J have to be processed in sequence, i.e. Jr must be
finished before Jr+1 starts, r = 1, . . . , |J | − 1. No other precedence constraints
exist. Consequently, the set P consists of all pairs (Jr, Jr+1), 1 ≤ r < |J |, J ∈ J .

Denote by Ifirst and I last the subsets of operations that are first and last operations
of jobs, respectively, and call two operations i, j of a job J to be consecutive if i = Jr
and j = Jr+1 for some r, 1 ≤ r < |J |. Then, constraints (1.2), (1.3) and (1.4) can be
rewritten as (1.9), (1.10) and (1.11), respectively, giving the following formulation of
the JS as a disjunctive program:

minimize ατ (1.8)

subject to:

αi − ασ ≥ 0 for all i ∈ Ifirst, (1.9)

ατ − αi ≥ di for all i ∈ I last, (1.10)

αj − αi ≥ di for all i, j ∈ I consecutive in some job J, (1.11)

αj − αi ≥ di or αi − αj ≥ dj for all {i, j} ∈ Q, (1.12)

ασ = 0. (1.13)

A small job shop example is introduced in Figure 1.2. It consists of three machines
and three jobs, each visiting all machines exactly once. The figure depicts a solution
with makespan 14 in a Gantt chart. The bars represent the operations that are
indicated by the attributed numbers, e.g. the bar with number 2.3 refers to the third
operation of job 2. The routing of the jobs as well as the processing durations can be
read directly in the chart.

CHAPTER 1. INTRODUCTION 9

4 8 12 16 20 24

t
m1

m2

m3

1.1 3.2 2.3

2.1 1.2 3.3

3.1 2.2 1.3

Figure 1.2.: A solution of a small job shop example.

The term “job shop” refers to a manufacturing process type that is generally used
when a rather low volume of high-variety products is produced. The high flexibility
established by general-purpose machines is a main characteristic of the job shop.
The flexibility makes it possible to treat jobs that differ considerably in processing
requirements including processing steps, processing times and setups.

Job shop scheduling problems or variations of it arise in industries adopting job
shop or similar production systems such as the chemical and pharmaceutical sectors
[100], the semiconductor industry [78] and the electroplating sector [68]. Job shop
scheduling problems are also present in the service sector such as in transportation
systems [71], in health care [93] and in warehouses [62].

1.4. Extensions of the Classical Job Shop

Although a core of generic scheduling problems, models and methods has been de-
veloped, many practical scheduling problems are treated ad-hoc in an application
context, as also mentioned by Pinedo in [96], p. 431: “It is not clear how all this
knowledge [about generic models and methods] can be applied to scheduling prob-
lems in the real world. Such problems tend to differ considerably from the stylized
models studied by academic researchers.” A typical obstacle in using generic schedul-
ing models and methods are features arising in practice that are not included in the
models (cf. Pinedo [96], p.432).

This is all the more true for the JS. In this section, we informally introduce the
following features that arise in practice and are not taken into account in the JS:
setup times, release times and due dates, limited number of buffers, transfer times,
time lags, routing flexibility and transports.

1.4.1. Setup Times

After completion of an operation, a machine may be set up, i.e. made ready, for
the next operation by various tasks including machine cleaning, tool changing and
temperature adjusting. An initial machine setup before the processing of the first
operation and a final setup after the last operation for setting a machine in desired
end conditions may also be necessary.

10 1.4. EXTENSIONS OF THE CLASSICAL JOB SHOP

m1 1.1 2.3 3.2 m2 1.2 2.1 3.3 m3 1.3 2.2 3.1

1.1 0 2 3 1.2 0 0 2 1.3 0 3 3

2.3 0 0 2 2.1 3 0 2 2.2 2 0 0

3.2 0 2 0 3.3 3 2 0 3.1 2 2 0

Table 1.1.: Setup times on machines m1 (left), m2 (middle) and m3 (right). The first

operation is specified by the row, the second by the column.

4 8 12 16 20 24

t
m1

m2

m3

1.1 3.2 2.3

2.1 1.2 3.3

3.1 2.2 1.3

Figure 1.3.: A solution of an example with setup times.

The time needed for the setup, called setup time or change over time, may depend
on the previous and next operation to be executed on the machine. Such setup times
are called sequence-dependent. If the setup time depends just on the next operation
to be executed, it is called sequence-independent.

In the JS, setup times are assumed to be negligibly small or included in the opera-
tion’s processing times. Sequence-dependent setup times are not taken into account.

Setup times, particularly sequence-dependent setup times, are common in prac-
tice, occurring for example in the printing, dairy, textile, plastics, chemical, paper,
automobile, computer and service industries as stated by Allahverdi et al. [3].

Let us introduce sequence-dependent setup times into the example of Figure 1.2.
For each ordered pair of operations executed on the same machine a setup time is
defined in Table 1.1. For instance, if operation 2.2 is executed directly after 3.1 on
machine m3 then a setup time of 2 occurs, see row 3.1, column 2.2 in block m3.

A solution is depicted in Figure 1.3. The processing sequences on the machines are
the same as in the solution of the JS (see Figure 1.2). Setups are depicted by narrow,
hatched bars. Due to the setup times, starting and finishing times of the operations
have changed and the makespan has increased from 14 to 17.

1.4.2. Release Times and Due Dates

In the JS it is assumed that all jobs are available in the beginning of the planning
horizon. In practice, however, jobs may not be able to start at time 0 for various
reasons including dynamic job arrivals or prior planning decisions. The earliest time
a job can start is called release time.

CHAPTER 1. INTRODUCTION 11

4 8 12 16 20 24

t
m1

m2

m3

3.2 1.1 2.3

2.1 3.3 1.2

3.1 2.2 1.3

Figure 1.4.: A solution of an example with release times and due dates.

Furthermore, a job may have to be finished at some given time, called due date,
for instance due to delivery time commitments to customers and planning decisions
(e.g. prioritization of the jobs).

For each job, its release time and due date specifies a time window within which
its operations should or must be executed. Completion after the due date is generally
allowed but such lateness is penalized. A due date that must be satisfied is called
deadline (cf. Pinedo [96], p. 14).

Consider time windows in the example of Figure 1.2. Assume that for job 1, 2 and
3, the release time is 7, 6 and 0, and the due date is 23, 16 and 14, respectively. The
solution depicted in Figure 1.4 respects these times.

1.4.3. Limited Number of Buffers and Transfer Times

After completion of an operation, a job is either finished, goes directly to its next
machine or waits somewhere until its next machine becomes available. Buffers, also
called storage places, may be available for the jobs that must wait. If no buffer is
available or all buffers are occupied, a job may also wait on its machine, thus blocking
it, until a buffer or the next machine becomes available.

Transferring a job from a machine to the next (or to a buffer) needs some time
during which both resources are simultaneously occupied. This time is called transfer
time.

In the JS it is assumed that an unlimited number of buffers is available, and transfer
times are negligible or part of the processing times. In practice, however, the number
of buffers is limited for various reasons. Buffers may be expensive or inadequate for
technological reasons, or the number of buffers is limited in order to efficiently limit
and control work-in-process.

Many systems in practice have limited or no buffers, for example flexible manufac-
turing systems [107], robotic cells [30], electroplating lines [73], automated warehouses
[62] and railway systems [88].

Consider no buffers and transfer times 0 for all transfers in the example of Figure
1.2. A solution is shown in Figure 1.5. Blockings are depicted by narrow bars filled
in the color of the job that is blocking the machine. For example, job 2 waits on
machine m2 from time 4 to 6.

12 1.4. EXTENSIONS OF THE CLASSICAL JOB SHOP

4 8 12 16 20 24

t
m1

m2

m3

1.1 3.2 2.3

2.1 1.2 3.3

3.1 2.2 1.3

Figure 1.5.: A solution of an example without buffers and with transfer times 0.

4 8 12 16 20 24

t
m1

m2

m3

1.1 3.2 2.3

1.2 2.1 3.3

3.1 1.3 2.2

Figure 1.6.: A solution of an example without buffers and with transfer times 1.

Now consider no buffers and transfer times 1 for all transfers in the example of
Figure 1.2. A solution is shown in Figure 1.6. Transfers are depicted by bars in the
color of the job. Note that the processing sequences on the machines have changed
compared to the solution in Figure 1.5 since those sequences are infeasible in case of
positive transfer times. Indeed, the three jobs swap their machines at time 6 in the
solution with transfer times 0. It is easy to see that such “swaps” are not feasible in
the case of positive transfer times.

1.4.4. Time Lags and No-Wait

Consecutive operations in a job are sometimes not just coupled by precedence relations
as in the JS, but the time after the end of one operation and the beginning of the
next may be restricted by minimum and maximum time lags.

Clearly, a precedence relation between consecutive operations in a job can be mod-
eled with such time lags by setting the minimum time lag to 0 and the maximum time
lag to infinity (not present). If the minimum time lag is negative, the next operation
might start before the previous is finished. If both (minimum and maximum) time
lags are 0, the relation is referred to as no-wait, imposing that the job’s next operation
has to start exactly when the previous operation is finished. More generally, if the
minimum and maximum time lag is equal, then the relation is referred to as fixed
time lag or generalized no-wait.

In practice, time lags arise in various industries. Particularly important is this
feature if chemical reactions are present (e.g. in the chemical and pharmaceutical
sectors [100], semiconductor and electroplating industries [68]), and if properties such
as temperature and viscosity have to be maintained (e.g. in the metalworking industry
[22]).

CHAPTER 1. INTRODUCTION 13

4 8 12 16 20 24

t
m1

m2

m3

1.1 3.2 2.3

1.2 3.3 2.1

3.1 1.3 2.2

Figure 1.7.: A solution of an example with no-wait relations.

4 8 12 16 20 24

t
m1

m2

m3

m4

m5

1.1 3.2

2.1 1.2 3.3

2.2 1.3

2.3

3.1

Figure 1.8.: A solution of an example with routing flexibility.

Consider the example of Figure 1.2 and introduce a no-wait relation between any
two consecutive operations in a job. A solution of this example is depicted in Figure
1.7.

1.4.5. Routing Flexibility

In the JS, each operation is processed on a dedicated machine. In practice, however,
an operation may be performed by various machines and one of these alternatives must
be selected. This feature is commonly called routing flexibility. In a job shop with
routing flexibility, not only starting times of the operations, but also an assignment
of a machine for each operation must be specified.

Routing flexibility is mainly achieved by the availability of multiple identical ma-
chines and by a machine’s capability of performing different processing steps. This
feature can be found in almost all industries. Typical examples are multi-purpose
plants in process industries [100] and flexible manufacturing systems [72].

Consider the example of Figure 1.2 and duplicate machines m1 and m3, i.e. add
two additional machines, called m4 and m5, able to execute operations 1.1, 2.3, 3.2
and 1.3, 2.2, 3.1, respectively. A solution of this example is depicted in Figure 1.8.

14 1.5. OVERVIEW OF THE THESIS

0 1 2 3 4

m1 m2 m3

r1 r2

x

rail

Figure 1.9.: The layout of a transportation system.

1.4.6. Transports

After completion of an operation, a job has to be transported to its next machine
if this machine is not at the same location as the current machine. In the JS, such
transport steps are neglected or included in the processing times. In many practical
cases, however, transports need to be considered, e.g. because they take a considerable
amount of time, or only a limited number of mobile devices is available to execute
the moves.

Mobile devices often interfere with each other in their movements. Typically, inter-
ferences arise when these devices move in a common transportation network. Apart
from scheduling the processing and transport operations, also feasible trajectories of
the mobile devices must be determined in such cases.

In practice, versions of job shop problems with transportation arise in various sec-
tors, for example in electroplating plants [73], in the metalworking industry [40], in
container terminals [82], and in factories with overhead cranes [5] and robotic cells
[35].

Consider the example of Figure 1.2. Introduce the transportation system sketched
in Figure 1.9 consisting of robots that transport the jobs from one machine to the
next. The robots move on a common rail line with a maximum speed of one. They
cannot pass each other and must maintain a minimum distance from each other of
one. Machines m1, m2 and m3 are located along the rail at the locations 1, 2 and 3,
respectively (measured on the x-axis). There are no buffers available. Transferring a
job from a machine to a robot, or vice versa, takes one time unit.

A solution with one and two robots is depicted in Figure 1.10 and 1.11, respectively.
The horizontal and vertical axis stands for the time and the location on the rail, re-
spectively. The machining operations are depicted as bars at the location representing
the location of the corresponding machine. Transport operations are not shown, but
can be inferred from the trajectories of the robots that are drawn by lines. Thick line
segments indicate that the robot is loaded with a job executing a transport operation,
while thin sections correspond to idle moves.

1.5. Overview of the Thesis

In view of the limited applicability of the JS in practice, richer job shop models
and general solution methods for these models are needed to bridge the gap between
theory and practice. In this thesis, we aim toward closing this gap by proposing a

CHAPTER 1. INTRODUCTION 15

4 8 12 16 20 24 28 32 36

t

x

1

2

3

4

1.1

1.2

1.3

2.1

2.2

2.3

3.1

3.2

3.3

r1

Figure 1.10.: A solution of an example with one robot.

4 8 12 16 20 24 28 32 36

t

x

1

2

3

4

1.1

1.2

1.3

2.1

2.2

2.3

3.1

3.2

3.3

r1

r2

Figure 1.11.: A solution of an example with two robots.

16 1.5. OVERVIEW OF THE THESIS

complex job shop model and a solution method that can be applied to a large class
of complex job shop problems.

The thesis consists of two parts. In Part I, a general model, called the Complex
Job Shop (CJS) model, covering (to some extent) the practical features introduced in
Section 1.4 is established and a formulation based on a disjunctive graph is developed
in Chapter 2. Based on the disjunctive graph formulation, Chapter 3 develops a
heuristic solution method that can be applied to a large class of CJS problems. The
approach is a local search based on job insertion and is called the Job Insertion Based
Local Search (JIBLS).

In Part II, the CJS model and the JIBLS solution method are tailored and applied
to a selection of complex job shop problems obtained by extending the JS with a com-
bination of the practical features described in Section 1.4. Some of these problems are
known and some have not yet been addressed in the literature. In the known prob-
lems, the numerical results obtained by the JIBLS are compared to the best results
found in the literature, and in the other problems first benchmarks are established
and compared to results obtained by a Mixed Integer Linear Programming (MIP)
approach.

The landscape of the selected complex job shop problems is provided in Figure
1.12. The vertical axis describes features defining the coupling of two consecutive
operations in a job (i.e. buffers and time lags), and the horizontal axis provides the
other addressed features (i.e. setups, flexibility and transportation). Each problem is
represented by a box.

In Chapter 4, an extension of the JS characterized by sequence-dependent setup
times and routing flexibility, called the Flexible Job Shop with Setup Times (FJSS), is
considered. The FJSS and its simpler version without setup times, called the Flexible
Job Shop (FJS), are known problems in the literature.

In Chapter 5, a version of the FJSS characterized by the absence of buffers, called
the Flexible Blocking Job Shop with Transfer and Setup Times (FBJSS), is treated.
Literature related to the FBJSS is mainly dedicated to its simpler version without
flexibility and without setup times, called the Blocking Job Shop (BJS). While the
BJS has found increasing attention over the last years, we are not aware of previous
literature on the BJS with flexibility and with setup times, except for publication [45].

Chapter 6 addresses instances of FJSS and FBJSS problems where jobs are pro-
cessed on machines in a sequence of machining operations and are transported from
one machine to the next by mobile devices, called robots, in transport operations. We
assume in this chapter that the robots do not interfere with each other, and consider
two versions of the problem. In the first version, called the Job Shop with Transporta-
tion (JS-T), an unlimited number of buffers is available, and in the second version,
called the Blocking Job Shop with Transportation (BJS-T), no buffers are available.
While the JS-T is a standard problem in the literature, the BJS-T has not yet been
addressed.

Building on the previous chapter, in Chapter 7 we address a version of the BJS-T
with robots that interfere with each other in space, and call it the Blocking Job Shop
with Rail-Bound Transportation (BJS-RT). The robots move on a single rail line along
which the machines are located. The robots cannot pass each other, must maintain

CHAPTER 1. INTRODUCTION 17

F
ea

tu
re

s

u
n
li
m

it
ed

b
u
ff

er
s

w
/
o

ti
m

e
la

g
s

w
/
o

b
u
ff

er
s

w
/
o

ti
m

e
la

g
s

w
/
o

b
u
ff

er
s

w
it

h
ti

m
e

la
g
s

fi
x
ed

ti
m

e
la

g
s

(n
o
-w

a
it

)

w
/
o

se
tu

p
s

w
/
o

fl
ex

ib
il
it

y

w
it

h
se

tu
p
s

w
/
o

fl
ex

ib
il
it

y
w

/
o

se
tu

p
s

w
it

h
fl
ex

ib
il
it

y
w

it
h

se
tu

p
s

w
it

h
fl
ex

ib
il
it

y

tr
a
n
sp

o
rt

a
ti

o
n

w
/
o

co
ll
is

io
n
s

tr
a
n
sp

o
rt

a
ti

o
n

o
n

a
si

n
g
le

ra
il

li
n
e

C
J
S

F
B

J
S
S

F
B

J
S

B
J
S
S

B
J
S

F
J
S
S

F
J
S

J
S
S

J
S

B
J
S
-T

J
S
-T

B
J
S
-R

T

N
W

J
S
S

N
W

J
S

F
N

W
J
S
S

F
N

W
J
S

N
W

J
S
-T

(t
ra

n
si

ti
v
e

a
rc

s
a
re

o
m

it
te

d
)

L
eg

en
d

C
h
a
p
.

2
-3

C
h
a
p
.

4
C

h
a
p
.

5

C
h
a
p
.

6
C

h
a
p
.

7
P

u
b
.

[2
0
]

a
b

b
ca

n
b

e
m

o
d
el

ed
a
s

a
n

in
st

a
n
ce

o
f
a

w
/
o
:

w
it

h
o
u
t

Figure 1.12.: A landscape of selected complex job shop problems.

18 1.5. OVERVIEW OF THE THESIS

a minimum distance from each other, but can “move out of the way”. Besides a
schedule of the (machining and transport) operations, also feasible trajectories of the
robots, i.e. the location of each robot at any time, must be determined. Building on
the BJS-T and an analysis of the feasible trajectory problem, a formulation of the
BJS-RT in a disjunctive graph is derived. Efficient algorithms to determine feasible
trajectories for a given schedule are also developed. To our knowledge, the BJS-RT
is the first generic job shop scheduling problem considering interferences of robots.

In Figure 1.12, complex job shop problems with fixed time lags, sometimes called
generalized no-wait job shop problems, are also illustrated. These problems are not
addressed in this thesis. However, the version with setups, called the No-Wait Job
Shop with Setup Times (NWJSS) is addressed in the publication [20] and solved by
a method that is also based on job insertion, but that is different to the approach
taken in the JIBLS.

Part I.

Complex Job Shop Scheduling

In this part, a general model, called the Complex Job Shop (CJS) model, that cov-
ers (to some extent) the practical features introduced in Section 1.4 is established
and a formulation based on a disjunctive graph is given. Furthermore, a local
search heuristic based on job insertion is developed. It is applicable to a large class
of CJS problems, and will be called the Job Insertion Based Local Search (JIBLS).

CHAPTER 2

MODELING COMPLEX JOB SHOPS

2.1. Introduction

In this chapter we develop a complex job shop model that covers the wide range of
practical features discussed in the previous chapter: sequence-dependent setup times,
release times and due dates, no buffers (blocking), transfers, time lags, and routing
flexibility.

The chapter is organized as follows. First, standard formulations of the JS as
a disjunctive program, as a mixed integer linear program and as a combinatorial
optimization problem in a disjunctive graph are given in Section 2.2. Then, based
on the article [42] of Gröflin and Klinkert, a general disjunctive scheduling model is
presented in Section 2.3. This model does not “know” jobs and machines. We adapt
the model in Section 2.4 by specializing it to capture essential features of the job shop
such as machines and job structure, and by extending it to include routing flexibility.
The obtained model also captures the aforementioned practical features and will be
called the Complex Job Shop (CJS) model.

Graphs will be needed. They will be directed, unless otherwise stated, and the
following standard notation will be used. An arc e = (v, w) has a tail (node v), and a
head (node w), denoted by t(e) and h(e) respectively. Also, given a graph G = (V,E),
for any W ⊆ V , γ(W) = {e ∈ E : t(e), h(e) ∈ W}, δ−(W) = {e ∈ E : t(e) /∈ W and
h(e) ∈W}, δ+(W) = {e ∈ E : t(e) ∈W and h(e) /∈W} and δ(W) = δ−(W)∪δ+(W).
These sets are defined in G, we abstain however from a heavier notation, e.g. δ+

G(W)
for δ+(W). It will be clear from the context which underlying graph is meant. Finally,
in a graph G = (V,E, d) with arc valuation d ∈ RE , a path (or cycle) in G of positive
length will be called a positive path (or cycle) and a path of longest length a longest
path.

22 2.2. SOME FORMULATIONS OF THE CLASSICAL JOB SHOP

2.2. Some Formulations of the Classical Job Shop

A number of formulations of the JS are given in well-known works (e.g. Manne
[75], Balas [8], Adams et al. [1]) and in standard textbooks on scheduling (e.g.
Blazewicz et al. [11], Brucker and Knust [17], Pinedo [96]). We recall here the
disjunctive programming formulation given in Section 1.3, and derive from it standard
formulations as a mixed integer linear program and as a combinatorial optimization
problem in a disjunctive graph.

2.2.1. A Disjunctive Programming Formulation

Recalling that Q contains all unordered pairs {i, j} of distinct operations i, j ∈ I with
mi = mj , the JS can be formulated as the following disjunctive program:

minimize ατ (2.1)

subject to:

αi − ασ ≥ 0 for all i ∈ Ifirst, (2.2)

ατ − αi ≥ di for all i ∈ I last, (2.3)

αj − αi ≥ di for all i, j ∈ I consecutive in some job J, (2.4)

αj − αi ≥ di or αi − αj ≥ dj for all {i, j} ∈ Q, (2.5)

ασ = 0. (2.6)

For explanations we refer the reader to Section 1.3.

2.2.2. A Mixed Integer Linear Programming Formulation

A mixed integer linear programming formulation can be obtained in a straightforward
way using the above disjunctive program and introducing a binary variable yij for each
{i, j} ∈ Q, with the following meaning: yij is 1 if operation i is preceding j, and 0
otherwise. Letting B be a large number, the JS problem is the following MIP problem:

minimize ατ (2.7)

subject to:

αi − ασ ≥ 0 for all i ∈ Ifirst, (2.8)

ατ − αi ≥ di for all i ∈ I last, (2.9)

αj − αi ≥ di for all i, j ∈ I consecutive in some job J, (2.10)

αj − αi +B(1− yij) ≥ di for all {i, j} ∈ Q, (2.11)

αi − αj +Byij ≥ dj for all {i, j} ∈ Q, (2.12)

yij ∈ {0, 1} for all {i, j} ∈ Q, (2.13)

ασ = 0. (2.14)

CHAPTER 2. MODELING COMPLEX JOB SHOPS 23

2.2.3. A Disjunctive Graph Formulation

The JS is frequently formulated as a combinatorial optimization problem in a dis-
junctive graph. Each operation is represented by a node in this graph. The nodes of
two consecutive operations in a job are linked by an arc representing the precedence
constraint between these two operations. The nodes of two operations using a com-
mon machine are linked by a pair of disjunctive arcs representing the corresponding
disjunctive constraint.

Specifically, the disjunctive graph G = (I+, A,E, E , d) is constructed as follows.
Each operation i ∈ I+ = I ∪ {σ, τ} is represented by a node and identify a node with
the operation it represents.

The set of conjunctive arcs A consists of the following arcs representing the set
of constraints (2.2)-(2.4) of the disjunctive programming formulation: (i) for each
i ∈ Ifirst, an initial arc (σ, i) of weight 0, (ii) for each i ∈ I last, a final arc (i, τ) of
weight di, and (iii) for any two consecutive operations i, j in some job J , an arc (i, j)
of weight di.

The set of disjunctive arcs E representing constraints (2.5) of the disjunctive pro-
gram is given as follows. For any two distinct operations i, j ∈ I with mi = mj , i.e.
{i, j} ∈ Q, there are two disjunctive arcs (i, j), (j, i) with respective weights di, dj .
The family E consists of all introduced pairs {(i, j), (j, i)} of disjunctive arcs.

Definition 1 Any set of disjunctive arcs S ⊆ E is called a selection in G. A selection
S is complete if S ∩D 6= ∅ for all D ∈ E. Selection S is positive acyclic if subgraph
G(S) = (V,A ∪ S, d) contains no positive cycle, and is positive cyclic otherwise.
Selection S is feasible if it is positive acyclic and complete.

Then, the JS is the following problem:

Among all feasible selections, find a selection S minimizing the length of a longest
path from σ to τ in G(S) = (V,A ∪ S, d).

The disjunctive graph formulations given in some articles and textbooks differ
slightly from the above formulation.

First, a disjunctive arc pair is sometimes represented by an undirected arc (an
edge), and a complete selection is defined by specifying a direction for each edge,
asking |S ∩D| = 1 for all D ∈ E (see Brucker and Knust [17]).

Second, the distinction between cycles and positive cycles is not needed in the JS,
as any cycle in G is positive. Consequently, a feasible selection (sometimes called a
“consistent” selection) is a complete selection S where G(S) is acyclic (see Adams et
al. [1] and Brucker and Knust [17]). Nevertheless, the more general Definition 1 is
given here in view of the other, more complex job shop scheduling problems addressed
in the sequel.

2.2.4. An Example

Consider the small JS example introduced in Figure 1.2. The corresponding dis-
junctive graph is shown in Figure 2.1. The conjunctive arcs are colored black, the

24 2.3. A GENERALIZED SCHEDULING MODEL

σ

1.1

1.2

1.3

2.1

2.2

2.3

3.1

3.2

3.3 τ

m1

m2

m3

0
0

0

6

4

4

4

2

2

6

2

4

6

2

6

2
2

2

4

4

4

4
4

4

4

2

4

6 2

6

Figure 2.1.: Disjunctive graph G of the example.

σ

0

1.1
0

1.2

6

1.3

10

2.1

0

2.2

6

2.3

8

3.1
0

3.2
6

3.3

10

τ

14

m1

m2

m3

0
0

0

6

4

4

4

2

2

6

2

4

6

6

2

4

4

4

2

6

6

Figure 2.2.: Graph G(S) of the feasible selection S corresponding to the schedule from
Figure 1.2.

disjunctive arcs are drawn as dashed, red lines and the numbers depict the weights of
the arcs.

The feasible selection that corresponds to the schedule from Figure 1.2 is shown in
Figure 2.2. The selected disjunctive arcs are drawn as solid, red lines. The starting
time of each operation i ∈ I+, i.e. the length of a longest path from σ to i in G(S),
is depicted in blue.

This example contains |E| = 9 disjunctive arc pairs, so there are 29 = 512 possi-
bilities for selecting exactly one arc from each pair. Only 64 of these selections are
feasible. The makespans of all feasible selections are shown in the histogram of Figure
2.3. The best selection has makespan 14 and is the one displayed in Figure 2.2.

2.3. A Generalized Scheduling Model

In this section we present a generalized disjunctive scheduling model that can be used
to formulate various scheduling problems, among them also the JS. It is based on
the article “Feasible insertions in job shop scheduling, short cycles and stable sets”
by Gröflin and Klinkert [42].

CHAPTER 2. MODELING COMPLEX JOB SHOPS 25

14 16 18 20 22 24 26 28 30 32 34
0

5

10

15

1 1

4

2

4

1
2 1

3

1
5

6

3 3

Makespan

F
re

q
u
en

cy

Figure 2.3.: Makespans of the 64 feasible selections.

2.3.1. A Disjunctive Programming Formulation

Let V be a finite set of events (e.g. starts of operations), σ, τ ∈ V a fictive start and
end event, respectively, A ∪ E ⊆ V × V,A ∩ E = ∅, two distinct sets of precedence
constraints, and d ∈ RA∪E a weight function. A precedence constraint (v, w) ∈ A∪E
with weight dvw states that event v must occur at least dvw time units before event
w. Precedence constraints of set A and E are called conjunctive and disjunctive
precedence constraints, respectively. In contrast to the conjunctive precedence con-
straints that always must hold, disjunctive constraints must hold if some other dis-
junctive constraints in E are violated. Hence, a family of disjunctive sets E ⊆ 2E

is defined together with E. Each disjunctive constraint is in at least one disjunc-
tive set, i.e.

⋃
D∈E D = E. Then, the generalized disjunctive scheduling problem

Π = (V,A,E, E , d) is the following problem:

minimize ατ (2.15)

subject to:

αw − αv ≥ dvw for all (v, w) ∈ A, (2.16)∨
(v,w)∈D

αw − αv ≥ dvw for all D ∈ E , (2.17)

ασ = 0. (2.18)

Any feasible solution α ∈ RV of Π, also called a schedule, specifies times αv for all
events v ∈ V so that all conjunctive precedence constraints expressed in (2.16) are
satisfied and at least one disjunctive precedence constraint of each disjunctive set is
satisfied, as expressed in (2.17). The makespan is minimized as expressed in (2.15).

2.3.2. A Disjunctive Graph Formulation

The scheduling problem Π is now formulated in a disjunctive graph G = (V,A,E,
E , d), V denoting the node set, A the set of conjunctive arcs, E the set of disjunctive

26 2.3. A GENERALIZED SCHEDULING MODEL

arcs, and d ∈ RA∪E the weights of the arcs. Each event is represented by a node
and we identify a node with the event it represents. Each precedence constraint
corresponds to an arc (v, w) with weight dvw.

Denote by ΩΠ ⊆ RV the solution space of Π. ΩΠ can be described as follows using
(complete, positive acyclic, positive cyclic) selections as given in Definition 1.

Let S ⊆ 2E be the family of all feasible selections. Given a selection S, denote by
ΩΠ(S) ⊆ RV the family of times α ∈ RV satisfying in G(S) = (V,A ∪ S, d):

αw − αv ≥ dvw for all arcs (v, w) ∈ A ∪ S, (2.19)

ασ = 0. (2.20)

Proposition 2 The solution space ΩΠ of the scheduling problem Π is

ΩΠ =
⋃
S∈S

ΩΠ(S). (2.21)

Proof. i) Consider any S ∈ S and α ∈ ΩΠ(S). By (2.19) and (2.20), (2.16) and (2.18)
obviously hold. As selection S is feasible, it is also complete and contains therefore at
least one disjunctive constraint (v, w) for all disjunctive sets D ∈ E . Hence by (2.19),
(2.17) is satisfied, and α ∈ ΩΠ.

ii) Let α ∈ ΩΠ and let S ⊆ E be composed of all disjunctive constraints (v, w) ∈ E
that are satisfied by α, i.e. αw − αv ≥ dvw. Obviously, α ∈ ΩΠ(S) for this selection
S. We show that S is feasible, i.e. S ∈ S. Indeed, S is complete as α ∈ ΩΠ implies
(2.17), i.e. α satisfies at least one disjunctive constraint (v, w) of each disjunctive set
D ∈ E . S is also positive acyclic since α ∈ ΩΠ(S) is a feasible potential function in
G(S). By a well-known result of combinatorial optimization (see e.g. Cook et al. [26],
p.25), G(S) admits a feasible potential function – and hence a solution – if and only
if no positive cycle exists in G(S).

Given a feasible selection S ∈ S, finding a schedule α minimizing the makespan is
finding α ∈ Ω(S) minimizing ατ . As is well-known, this is easily done by longest path
computations in G(S) = (V,A ∪ S, d) and letting αi be the length of a longest path
from σ to i for all i ∈ V .

The scheduling problem Π can therefore be formulated as follows:

Among all feasible selections, find a selection S minimizing the length of a longest
path from σ to τ in G(S) = (V,A ∪ S, d).

Some remarks concerning the structure of the sets A, E and E are in order.

It is assumed that there is a path from node σ to each node v ∈ V and from each
node v to node τ in the conjunctive part (V,A, d) of G according to the meaning of σ
and τ . Moreover, it is assumed that (V,A, d) is positive acyclic, otherwise no feasible
solution exists.

As in [42], the disjunctive sets D ∈ E of the scheduling problems treated in this
thesis satisfy:

CHAPTER 2. MODELING COMPLEX JOB SHOPS 27

|D| = 2 for all D ∈ E , (2.22)

D ∩D′ = ∅ for any distinct D,D′ ∈ E , (2.23)

D is positive cyclic for all D ∈ E . (2.24)

Thus, any disjunctive set D ∈ E is of the form D = {e, e}. Arc e is said to be the
mate of e and vice versa. Since

⋃
D∈E D = E, the disjunctive arc set E is partitioned

into |E|/2 disjunctive pairs. Any complete selection S is composed of at least one arc
of each pair, and if S is feasible, then by (2.24) it chooses exactly one arc from each
pair.

In the disjunctive graph of the JS, the arcs of a disjunctive pair e, e have com-
mon end nodes, i.e. they are of the form (v, w), (w, v). In the disjunctive graph of
the generalized scheduling problem, a disjunctive arc pair need not be of the form
(v, w), (w, v) and may have distinct end nodes.

2.4. A Complex Job Shop Model (CJS)

In the generalized scheduling model, no mention of jobs or machines is made. We
adapt this model by specializing it to capture essential features of the job shop such
as machines and job structure and by extending it to include routing flexibility. The
model includes (to some extent) the features mentioned in Section 1.4 and will be
called the Complex Job Shop (CJS) model.

2.4.1. Building Blocks of the CJS Model and a Problem Statement

In the JS, a job is a sequence of operations on machines. After the processing of an
operation, the job may be stored somewhere “out of the system” and “comes back”
into the system for its next operation. Storage operations and buffers for storing the
jobs are not modeled explicitly.

Here we will consider all “machines” used by the jobs from their start to their com-
pletion. These machines are not restricted to processors executing some machining,
but can also be, for example, buffers for storage operations and mobile devices for
transport operations. As in the JS, we assume here that each machine can handle at
most one job at any time, and each operation needs one machine for its execution.

In the CJS model, a job can therefore be described as follows. Once started and
until its completion, a job is on a machine. After completing an operation, a job might
wait on the machine – thus blocking it – until it is transferred to its next machine.
While transferring a job, both involved machines are occupied simultaneously.

An operation can be described by the following four steps: i) a take-over step,
where the job is taken over from the previous machine, ii) a processing step (e.g.
machining, transport or storage), iii) a possible waiting time on the machine, and iv)
a hand-over step where the job is handed over to the next machine. The take-over step
of an operation must occur simultaneously with the hand-over step of its predecessor

28 2.4. A COMPLEX JOB SHOP MODEL

operation, i.e. the starting time of these steps as well as their duration are the same.
Take-over and hand-over steps will be sometimes referred to as transfer steps.

The duration of the processing step and transfer steps are given. The waiting time
in step iii) is unknown, but can be limited by specifying a maximum sojourn time
allowed on the machine. These times are also called maximum time lags.

We allow for routing flexibility. Each operation needs a machine for its execution.
However, this machine is not fixed, but can be chosen from a subset of alternative
machines.

We also allow for sequence-dependent setup times between two consecutive opera-
tions on a machine, and an initial setup time and a final setup time might be present
for each transfer step. The initial setup times, also called release times, specify ear-
liest starting times of the transfer steps and the final setup times, also called tails,
define minimum times elapsing between the end of the transfer steps and the overall
finish time (makespan).

As in the JS, any pair of operations using the same machine must be sequenced,
i.e. they cannot be executed simultaneously as a machine can handle at most one
job at any time. In addition, we also allow to sequence pairs of transfer steps. The
involved machines may not be the same. Such sequencing decisions are for instance
needed to model collision avoidance of robots (cf. Chapter 7).

Informally, the CJS problem can be stated as follows. A schedule consists of an
assignment of a machine and a starting time of the hand-over, processing and take-
over step for each operation so that all constraints described above are satisfied. The
objective is to find a schedule with minimal makespan.

2.4.2. Notation and Data

As in the JS, M denotes the set of machines, I the set of operations and J the set of
jobs. For each operation i ∈ I, the following notation and data is given.

• i needs a machine for its execution, which can be chosen from a (possibly
operation-dependent) subset of alternative machines Mi ⊆M .

• The durations of the take-over, processing and hand-over steps of i are the
following. Let h be the job predecessor operation of i and j its job successor
operation. For any m ∈ Mi, p ∈ Mh, q ∈ Mj , the duration of the take-over,
processing and hand-over step of i is dt(h, p; i,m), dp(i,m) and dt(i,m; j, q),
respectively. If i is the first operation of job J , its take-over step is called more
appropriately a loading step of duration dld(i,m), and similarly, if i is the last
operation of job J , its hand-over step is called an unloading step of duration
dul(i,m).

• The maximum sojourn time of i on m ∈ Mi is dlg(i,m). (lg stands for time
lag.)

• Let oi be the take-over step and oi the hand-over step of i. Denote by O =
{oj , oj : j ∈ I} the set of all transfer steps.

• An initial setup time ds(σ; o,m) and a final setup time ds(o,m; τ) is given for
each transfer step o ∈ {oi, oi} of i.

CHAPTER 2. MODELING COMPLEX JOB SHOPS 29

t
m

m′

m′′

h

i

j

k

k

loading

dld(h,m)

processing
dp(h,m)

waiting

hand-over
dt(h,m; i,m′)

initial setup
ds(σ; oh,m)

setup
ds(h,m; j,m)

final setup
ds(oj ,m; τ)

take-over
dt(j,m; k,m′′)

take-over
dt(j,m; k,m′)

Figure 2.4.: An illustration of the job structure and our notation.

For any two distinct operations i, j ∈ I and any common machine m ∈Mi ∩Mj , if
j immediately follows i on m, a setup of duration ds(i,m; j,m) occurs on m between
the hand-over step oi of i and the take-over step oj of j.

Additionally, let V be the set of pairs of transfer steps that must be sequenced. An
element of V has the form {(o,m), (o′,m′)}, o, o′ ∈ O,m,m′ ∈ M, and setup times
ds(o,m; o′,m′) and ds(o′,m′; o,m) are given with the following meaning. If transfer
step o is executed on machine m and o′ on m′ then they cannot occur simultane-
ously, and a minimum time must elapse between them, i.e. o has to end at least
ds(o,m; o′,m′) before o′ starts, or o′ has to end at least ds(o′,m′; o,m) before o starts.
We sometimes call V the set of conflicting transfer steps.

In this thesis, set V will be used to model collision avoidance in a job shop setting
with multiple mobile devices that move on a common rail (see Chapter 7). If not
otherwise stated, we assume V = ∅.

Figure 2.4 illustrates the described structure of the jobs and our notation in a Gantt
chart. Four operations h, i, j and k are depicted. Operations h and i are consecutive
in one job, and j and k are consecutive in another job. The operations can be executed
on the following machines: Mh = Mj = {m},Mi = {m′},Mk = {m,m′}. Operation
k as well as all involved transfer steps are depicted by dashed lines to indicate the
open choice of the machine for k.

Some standard assumptions on the durations are made. All durations are non-
negative. For each operation i ∈ I and machine m ∈ Mi, d

lg(i,m) ≥ dp(i,m). The
difference dlg(i,m) − dp(i,m) is the maximum time the job can stay on machine m
after completion of operation i.

Setup times satisfy the following so-called weak triangle inequality (cf. Brucker
and Knust [17], p. 11-12). For any operations i, j, k on a common machine m,
ds(i,m; j,m) + dp(j,m) + ds(j,m; k,m) ≥ ds(i,m; k,m). The triangle inequality en-
sures that setup times between non-consecutive operations on a machine do not be-
come active in the disjunctive graph formulation.

It is possible that two operations i, j that are consecutive in a job are on a same
machine m ∈Mi ∩Mj . In this case, both transfer time dt(i,m; j,m) and setup time

30 2.4. A COMPLEX JOB SHOP MODEL

ds(i,m; j,m) are usually set to zero, essentially combining both operations into a
single operation.

For any two operations i, j from distinct jobs, i ∈ J, j ∈ J ′, J 6= J ′, with some
common machine m ∈ Mi ∩Mj , the duration of the operations i and j on m must
be positive, where the duration of an operation is the sum of its take-over, pro-
cessing and hand-over durations. And similarly, for any conflicting transfer steps
{(o,m), (o′,m′)} ∈ V, the durations of the steps o on m and o′ on m′ must be posi-
tive. These assumptions state that if a pair of operations or a pair of transfer steps
must be sequenced, then they must have a positive duration.

2.4.3. A Disjunctive Graph Formulation

We now formulate the CJS in a disjunctive graph. Main features of the disjunctive
graph are the following, as illustrated in Figure 2.5.

For each operation and each alternative machine, four nodes are introduced repre-
senting the start and end of the take-over step and the start and end of the hand-over
step. Note that the node representing the end of the take-over step also represents
the start of the processing step.

The start and end of both transfer steps are linked by an arc, called take-over arc
and hand-over arc, respectively. The end of the take-over and the start of the hand-
over are joined by two arcs: a processing arc and a time lag arc. Two consecutive
operations in a job are joined by a pair of transfer arcs and arcs synchronizing the
hand-over of the previous operation with the take-over of the next operation.

Any two operations of the same job on a common machine are linked by a setup
arc, and similarly, any two conflicting transfer steps belonging to the same jobs are
linked by a setup arc.

Finally, a pair of disjunctive arcs is introduced between any pair of operations from
distinct jobs on a same machine linking the end of the hand-over of one operation
with the start of the take-over of the other operation. Additionally, for each pair
of conflicting transfer steps belonging to distinct jobs, a pair of disjunctive arcs is
introduced, linking the end of one transfer step with the start of the other transfer
step.

Specifically, the disjunctive graph G = (V,A,E, E , d) of the CJS is constructed as
follows. To each operation i ∈ I and machine i ∈ Mi a set of four nodes Vim =
{v1
im, v

2
im, v

3
im, v

4
im} is associated . Node set V of G consists of the union of the

Vim’s, together with two additional nodes σ and τ representing fictive start and end
operations of duration 0 occurring before and after all other operations, respectively,
so V = ∪{Vim : i ∈ I,m ∈Mi; {σ, τ}}.

The set of conjunctive arcs A comprises the following arcs:

1. For each operation i ∈ I and machine m ∈Mi, four arcs (v1
im, v

2
im), (v2

im, v
3
im),

(v3
im, v

4
im) and (v3

im, v
2
im) with respective weights: dld(i,m) if i ∈ Ifirst and 0

otherwise; dp(i,m); dul(i,m) if i ∈ I last and 0 otherwise; −dlg(i,m). The four
arcs are referred to as take-over, processing, hand-over and time lag arc.

CHAPTER 2. MODELING COMPLEX JOB SHOPS 31

v1im v2im v3im v4im

v1jm′ v2jm′ v3jm′ v4jm′

synchronization

transfer

take-over

processing

time lag hand-over

Figure 2.5.: Two consecutive operations i, j in a job on machines m ∈ Mi,m
′ ∈ Mj . The

dotted red arcs illustrate potential disjunctive arcs.

2. For each operation i ∈ I and machine m ∈ Mi, two initial setup arcs (σ, v1
im)

and (σ, v3
im) of respective weights ds(σ; oi,m) and ds(σ; oi,m), and similarly,

two final setup arcs (v2
im, τ) and (v4

im, τ) of respective weights ds(oi,m; τ) and
ds(oi,m; τ).

3. For any two consecutive operations i and j of a job J and machines m ∈
Mi, m

′ ∈ Mj , two pairs of synchronization arcs (v3
im, v

1
jm′), (v1

jm′ , v
3
im) and

(v4
im, v

2
jm′), (v2

jm′ , v
4
im) of weight 0 joining the starts and ends of the hand-over

step of operation i and the take-over step of operation j, and a pair of transfer
arcs (v3

im, v
2
jm′), (v2

jm′ , v
3
im) of weight dt(i,m; j,m′) and −dt(i,m; j,m′) joining

the start of the hand-over of operation i with the end of the take-over of j.

4. For any two operations i = Jr and j = Js of a job J with 1 ≤ r+1 < s ≤ |J | and
common machine m ∈Mi ∩Mj , a setup arc (v4

im, v
1
jm) of weight ds(i,m; j,m).

And similarly, for any conflicting transfer steps {(o,m), (o′,m′)} ∈ V, if o pre-
cedes o′ in the same job, a setup arc (v, w), of weight ds(o,m; o′,m′), where v
and w are the nodes representing the end of o on m and the start of o′ on m′.

The set of disjunctive arcs E consist of the following arcs.

• For any two operations i, j ∈ I of distinct jobs and any common machine m ∈
Mi ∩ Mj , two disjunctive arcs (v4

im, v
1
jm), (v4

jm, v
1
im) with respective weights

ds(i,m; j,m), ds(j,m; i,m).

• For each pair of conflicting transfer steps {(o,m), (o′,m′)} ∈ V, if o and o′ be-
long to distinct jobs, two disjunctive arcs (v′, w), (w′, v) of respective weights
ds(o,m; o′,m′), ds(o′,m′; o,m), where v and v′ are the nodes representing the
start and end of the transfer step o on m, and w and w′ are the nodes repre-
senting the start and end of o′ on m′.

The family E consists of all introduced pairs of disjunctive arcs.

As the generalized disjunctive scheduling model considered in Section 2.3, the CJS
problem can now be formulated as a combinatorial optimization problem in the dis-
junctive graph G.

To capture the routing decisions, we introduce modes.

Definition 3 A mode is a tuple µ = (µ(i) : i ∈ I) assigning to each operation i ∈ I
a machine µ(i) ∈Mi, and let M be the set of all modes.

32 2.4. A COMPLEX JOB SHOP MODEL

Job Op. 1 Op. 2 Op. 3

Job 1 6, {m1,m4} 4, {m2} 4, {m3,m5}
Job 2 4, {m2} 2, {m3,m5} 2, {m1,m4}
Job 3 6, {m3,m5} 2, {m1,m4} 4, {m2}

Table 2.1.: Processing duration and alternative machines for all operations in the Example.

A mode µ selects a node-induced subgraph Gµ in G defined as follows. Let V µ =
∪{Vi,µ(i) : i ∈ I; {σ, τ}}, Aµ = A ∩ γ(V µ), Eµ = E ∩ γ(V µ) and Eµ = {{e, e} ∈ E :
e, e ∈ Eµ}. The resulting graph Gµ = (V µ, Aµ, Eµ, Eµ, d) is the disjunctive graph
associated to the mode µ. For simplicity, the restriction of the weight vector d to
Aµ ∪ Eµ is denoted again by d.

Definition 4 For any mode µ ∈ M and any set of disjunctive arcs S ⊆ Eµ, (µ, S)
is called a selection in G. Selection (µ, S) is complete if S ∩D 6= ∅ for all D ∈ Eµ.
Selection (µ, S) is positive acyclic if subgraph G(µ, S) = (V µ, Aµ ∪ S, d) contains no
positive cycle, and is positive cyclic otherwise. Selection (µ, S) is feasible if it is
positive acyclic and complete.

The CJS can now be formulated as the following problem:

Among all feasible selections, find a selection (µ, S) minimizing the length of a
longest path from σ to τ in subgraph G(µ, S) = (V µ, Aµ ∪ S, d).

2.4.4. An Example

We illustrate the CJS model in the example introduced in Figure 1.6, Chapter 1, with
the routing flexibility given in Section 1.4. For ease of reading, we recall here its data
and features. This example will be used throughout Part I and be called the Example.

The Example consists of three jobs 1, 2, 3, five machines M = {m1,m2, m3, m4,
m5}. Each job has three operations, the alternative machines and the processing
duration being given in Table 2.1. For instance, operation 2.3 (see Job 2, Op. 3)
has a processing duration of 2 and can be executed on machines m1 and m4. The
processing duration is assumed to be independent of the chosen machine.

All setup times ds(i,m; j,m), ds(σ; o,m) and ds(o,m; τ) are 0. All transfer times
dt(i,m; j,m′), loading times dld(i,m) and unloading times dul(i,m) are 1. There are
no maximum time lags present, so dlg(i,m) = ∞, and the time lag arcs are omitted
in disjunctive graph G. We remark that the Example is an instance of the flexible
blocking job shop, which will be discussed in Chapter 5 in detail.

In Figure 2.6, job 1 (the yellow job) of the Example is depicted, and some selected
arc weights are indicated. Figure 2.7 depicts all jobs of the Example in the disjunctive
graph using yellow, green and blue nodes for job 1, 2 and 3, respectively. Start node
σ and end node τ are omitted for clarity. The arc weight of one disjunctive arc pair
denoted by e, e is also indicated.

CHAPTER 2. MODELING COMPLEX JOB SHOPS 33

σ τ

dld(1.1,m1)

dp(1.1,m1)

dul(1.3,m3)

dld(1.1,m4)

dp(1.1,m4)

ds(σ; o1.1,m1)

ds(σ; o1.1,m1)

ds(o1.1,m1; τ)0

0

dt(1.1,m1; 1.2,m2)
−dt(1.1,m1; 1.2,m2)

m1

m2

m3

m4

m5

0

0 0

Figure 2.6.: Job 1 of the Example.

m1

m2

m3

m4

m5

e

e

ds(1.1,m1; 3.2,m1) ds(3.2,m1; 1.1,m1)

Figure 2.7.: All three jobs of the Example.

34 2.4. A COMPLEX JOB SHOP MODEL

m1

m2

m3

m4

m5

Figure 2.8.: The selection that corresponds to the solution of Figure 1.6.

The selection that corresponds to the schedule depicted in Figure 1.6 is shown in
Figure 2.8. Note that no operations are assigned to machines m4 and m5 in this
schedule.

2.4.5. Modeling Features in the CJS Model

We briefly discuss how the CJS model captures the features mentioned in Section 1.4.

Routing flexibility, sequence-dependent setup times, transfer times and maximum
time lags are modeled explicitly.

Release times can be modeled using the initial setup times. The final setup times
(so-called tails) can be used to incorporate due dates. Specifically, instead of mini-
mizing the makespan, we may want to minimize the maximum lateness of all jobs. To
achieve this objective, the final setup times are set as follows. For each job J ∈ J , let
dd(J) be the due date of J . For each operation i ∈ J of job J and machine m ∈Mi,
the final setup times ds(oi,m; τ) and ds(oi,m; τ) are set to −dd(J) (see e.g. Sourd
and Nuijten [106]).

The absence of buffers can easily be integrated into the model (see the Example).
No storage operations are needed in this case.

If an unlimited number of buffers is available, as in the JS, we may introduce a
buffer bJ for each job J . While not processed, a job J is stored in its buffer bJ .
The disjunctive graph of this case is illustrated in Figure 2.9 showing two consecutive
operations i, j of some job J and a storage operation i′ executed between i and j on
buffer bJ . Minimum and maximum storage times can be integrated by setting the
processing time dp(i′, bJ) and the time lag dlg(i′, bJ) accordingly.

To some extent, we can model a limited number of buffers in the same fashion.
Suppose, for example, that machine m has two buffers b, b′ and they are used after
completing an operation on m, and can handle at most one job at any time. If the
buffers are used sequentially, i.e. the job has to go sequentially through them, then

CHAPTER 2. MODELING COMPLEX JOB SHOPS 35

dp(i,m)

−dlg(i,m)

dp(i′, bJ) −dlg(i′, bJ)

dp(j,m′)

−dlg(j,m′)

0 0

dt(i,m; i′, bJ)

−dt(i,m; i′, bJ)

m

m′

bJ

0

0 0

Figure 2.9.: Two consecutive machining operations i, j of some job and buffer operation i′

executed between i and j.

dp(i,m)

−dlg(i,m)

dp(i′, b)

−dlg(i′, b) dp(j,m′)

−dlg(j,m′)

dp(i′′, b′) −dlg(i′′, b′)

dt(i,m; i′, b)

−dt(i,m; i′, b)

m

m′

b

b′

Figure 2.10.: Two consecutive machining operations i, j of some job and buffer operations
i′ on b and i′ on b′′ executed between i and j.

two storage operations are introduced after the operation on m. Figure 2.10 illustrates
this case. If the buffers are installed in a parallel fashion, i.e. a job visits exactly one of
the two buffers and we can choose which one, then one storage operation is introduced
with both buffers as alternative machines. Figure 2.11 illustrates this case.

Transport operations can be integrated in a simple manner by specifying the mobile
devices and transport operations accordingly. We refer to the Chapters 6 and 7 where
job shop problems with transportation are discussed further.

A no-wait condition between two consecutive operations i and j in some job is
integrated by setting dlg(i,m) = dp(i,m). Then the hand-over step of operation i
starts exactly at the end of its processing step. Moreover, due to the transfer arcs, the
job is transferred directly to its next machine, and the no-wait condition is satisfied.
This case is illustrated in Figure 2.12.

A final remark is in order. Obviously, depending on the presence or absence of the
various features in an instance, a more compact disjunctive graph formulation can be
obtained. We point to Chapter 4, where a compact form is provided for the flexible
job shop with setup times.

36 2.4. A COMPLEX JOB SHOP MODEL

dp(i,m)

−dlg(i,m)

dp(i′, b)

−dlg(i′, b)

dp(i′, b′) −dlg(i′, b′)

dp(j,m′)

−dlg(j,m′)

dt(i,m; i′, b)

−dt(i,m; i′, b)

m

m′

b

b′

Figure 2.11.: Two consecutive machining operations i, j of some job and buffer operation
i′ executed on b or b′ between i and j.

dp(i,m)
−dp(i,m)

dt(i,m; j,m′)

−dt(i,m; j,m′)

m

m′

Figure 2.12.: Two consecutive operations i, j with a no-wait condition.

CHAPTER 3

A SOLUTION APPROACH

3.1. Introduction

Chapter 2 introduced the so-called CJS model that includes a broad variety of job
shop scheduling problems such as the classical job shop, the blocking job shop, the
no-wait job shop and versions of them with setup times, transfer times, time lags and
routing flexibility.

CJS problems are clearly difficult problems. Finding a minimum makespan solution
is NP-hard in the classical job shop (Lenstra and Rinnooy Kan [65]) as well as in the
blocking and no-wait job shop (Hall and Sriskandarajah [47]). Moreover, besides this
complexity class membership, the classical job shop has also earned the reputation of
being one of the most computationally stubborn combinatorial problem considered
to date (Applegate and Cook in [4]). In the current state of the art, exact solution
approaches for job shop scheduling are capable of solving smaller problem instances,
but fail rapidly when problem size increases to numbers found in practice. It is also
notable that the impressive advances made in solving integer linear programs over the
last decade do not seem to have benefited proportionally to the solution of scheduling
problems.

For these reasons, most methods for job shop scheduling are of a heuristic nature
and will likely remain so in the near future, given the current state of the art. This
statement applies to the classical job shop: we mention here only the well-known
shifting bottleneck procedure of Adams et al. [1] and the tabu search algorithm of
Nowicki and Smutnicki [84], the adapted shifting bottleneck approach of Balas et
al. [9] in the presence of setups, and the tabu search algorithm of Mastrolilli and
Gambardella [79] in the presence of routing flexibility. This statement applies all the
more so to CJS problems, such as the blocking job shop, which are inherently more
difficult than the classical job shop.

38 3.2. THE LOCAL SEARCH PRINCIPLE

In this chapter, we describe a heuristic solution method for a class of CJS problems
based on the disjunctive graph formulation given in Chapter 2. The approach is
a local search based on job insertion, which we call the Job Insertion Based Local
Search (JIBLS), and which has been introduced by Klinkert [62] and Gröflin and
Klinkert [42] for the blocking job shop and extended to the flexible blocking job
shop with routing flexibility by Pham [92] and Gröflin, Pham and Bürgy [45], and
to the blocking job shop with rail-bound transportation by Bürgy and Gröflin [21].
The JIBLS described here in the more general context of the CJS model unifies its
application in the cases mentioned and extends somewhat its use. Its theoretical
foundation relies on the “insertion theory” developed in [42].

This chapter is structured as follows. In the next section, the applied local search
principle, i.e. job insertion, is introduced in the Example and formalized. Then, some
structural properties of job insertion are developed in Section 3.3. These properties
are used in Section 3.4 to generate feasible neighbor solutions yielding a neighborhood
that is used in a tabu search in Section 3.5.

3.2. The Local Search Principle

Local search methods are based on the exploration of a set of solutions by repeat-
edly moving from a (current) solution to another solution in the current solution’s
neighborhood. The aim is to reach an optimal or at least a good solution.

The moves are a key component of the local search. In the JIBLS, these moves are
based on job insertion. We illustrate the principle first in the Example and formalize
it then via a disjunctive graph.

3.2.1. The Local Search Principle in the Example

Consider the Example and let the schedule depicted in Figure 3.1 be the current
solution. Its corresponding selection (µ, S) is depicted in graph G(µ, S) in the lower
part of the figure.

The goal is to generate a neighbor of this solution by applying “local” changes, i.e.
a small part of the current solution is altered while the other part is kept. In job
shop scheduling, these changes are often defined on the level of sequencing decisions
and assignments of machines to operations. We apply this idea here and generate a
neighbor by choosing some operation and either moving it in the sequence of opera-
tions on the machine it was assigned to or assigning it to an alternative machine and
inserting it on that machine.

Specifically, some operation i ∈ I is chosen. Either a selected disjunctive arc e ∈ S
incident to (the nodes of) i is replaced by its mate e, or operation i is assigned to
another machine m ∈ Mi − µ(i) and is inserted on m by enforcing corresponding
disjunctive arcs incident to i.

Illustrating this in the Example, choose operation 2.2. Operation 2.2 can be as-
signed to machine m5 and inserted on m5. (This insertion is trivial here, as no other
operation is on that machine.) Another possibility is to move operation 2.2 before op-

CHAPTER 3. A SOLUTION APPROACH 39

2 4 6 8 10 12 14 16 18 20 22 24 26

t
m1

m2

m3

m4

m5

1.1 3.2 2.3

1.2 2.1 3.3

3.1 1.3 2.2

m1

m2

m3

m4

m5

Figure 3.1.: The current schedule in the Example.

40 3.2. THE LOCAL SEARCH PRINCIPLE

m1

m2

m3

m4

m5

e

Figure 3.2.: An infeasible neighbor selection (µ, S − e ∪ e).

eration 1.3 by replacing arc e = (v4
1.3,m3

, v1
2.2,m3

) with its mate e = (v4
2.2,m3

, v1
1.3,m3

),
resulting in the neighbor selection (µ, S − e ∪ e) depicted in Figure 3.2.

Consider the selection (µ, S− e∪ e) just obtained. At a certain point in time, job 1
finishes on machine m2 the processing of operation 1.2 and waits on m2, thus blocking
it, until it can be transferred to m3 for the processing of 1.3. Operation 2.2 must be
executed before 1.3 on m3. However, job 2 is waiting for machine m2 in order to
execute operation 2.1, a deadlock situation. Indeed, selection (µ, S − e ∪ e) is not
feasible as G(µ, S − e∪ e) contains the positive cycle highlighted in Figure 3.2 by the
thick arcs. Note that similar feasibility issues arise when assigning an operation to
another machine. In fact, it may not even be possible to insert the operation in the
sequence of operations on the new machine in a feasible way if no other changes are
allowed.

While infeasible solutions are accepted in some local search methods, they are gener-
ally avoided in complex job shop scheduling as recovering feasibility while maintaining
solution quality is difficult. For this reason, we aim at consistently generating feasible
solutions using more complex moves. The main question here is which “changes” to
allow in a move and which assignment and sequencing decisions to keep fixed. In job
shop scheduling, this choice is mainly driven by the machine and job structure.

One approach is based on resequencing the operations on one machine while keeping
the operation sequences on the other machines. This approach is for instance applied
in the shifting bottleneck procedure in the JS (Adams et al. [1]) and in the Job Shop
with Setup Times (JSS) (Balas et al. [9]). However, preserving feasibility seems to
be difficult in more complex job shops (see e.g. Zhang et al. [115] and Khosravi et
al. [57]).

Another approach is based on allowing the operations of one job to be moved
and keeping the operation sequences of all other jobs. This approach is known as
job insertion and has been applied as a mechanism for devising heuristics in several
scheduling problems. It was used, for instance, in the JS by Werner and Winkler [113]
and Kis [59] (see also Kis and Hertz [61]), and in more complex job shop scheduling

CHAPTER 3. A SOLUTION APPROACH 41

m1

m2

m3

m4

m5

a

b

c

e1

e1
e2

e2

e3

e3

e4

e4

e5

e5

e6

e6

Figure 3.3.: The insertion graph of job 2 with local flexibility at operation 2.2.

problems by van den Broek [111] and Gröflin et al. (cf. Section 3.1) where it proved
to be a valuable approach. Thus, it may also be valuable in the CJS model.

Consider again the Example with the selected operation 2.2. We allow operation
2.2 to be assigned to one of its alternative machines and the operations of job 2 to be
moved in the operation sequences on their corresponding machines, and keep all other
assignment and sequencing decisions fixed. In the disjunctive graph, these decisions
are reflected as illustrated in Figure 3.3. Starting from the disjunctive graph G of the
Example, we delete all nodes representing other modes, except for operation 2.2, and
delete all arcs incident to deleted nodes. As all other jobs are kept fixed, we add all
arcs between the other jobs to the conjunctive arc set. In the Example, three arcs are
kept fixed, called a, b and c in the figure, and the set of disjunctive arcs consists of
six arc pairs named er, er, r = 1, . . . , 6. The obtained graph is called the job insertion
graph of job 2 with local flexibility at operation 2.2. This graph will serve as the
framework in which moves are defined.

Note that the current selection, more appropriately called here the current insertion
of job 2, consists of the arc set {e1, e2, e3, e4, e5, e6}.

3.2.2. The Job Insertion Graph with Local Flexibility

We now formalize the job insertion concept described above.

Given is a feasible selection (µ, S) in the disjunctive graph G = (V,A,E, E , d) of a
CJS problem. Select an operation i ∈ I and let J be the job to which i ∈ J belongs.
Consider the problem of extracting and reinserting job J , allowing operation i to be
assigned to any machine m ∈ Mi while preserving machine assignment µ(j) for all
other operations j ∈ I − i. The disjunctive graph Gi = (Vi, Ai, Ei, Ei, d) for this
problem is obtained as follows.

As the mode of all operations j ∈ I− i is fixed at µ(j), delete from V node sets Vjm
for all j ∈ I − i and all machines m ∈Mj − µ(j), obtaining Vi. As the sequencing of

42 3.3. STRUCTURAL PROPERTIES OF JOB INSERTION

all other jobs is fixed, add to the set of conjunctive arcs A all arcs of selection (µ, S)
that are not incident to job J , obtaining Ai. Finally, delete from E all disjunctive
arcs not incident to J , obtaining Ei. Formally,

Vi = ∪{Vj,µ(j) : j ∈ I − i;Vim : m ∈Mi; {σ, τ}}, (3.1)

and let V Ji = ∪{Vj,µ(j) : j ∈ J − i;Vim : m ∈ Mi} be the subset of nodes of Gi
associated to job J and the set of arcs RJ = S − δ(V Ji) the part of selection (µ, S)
not incident to job J . The sets of conjunctive arcs, disjunctive arcs and disjunctive
arc pairs are

Ai = (A ∩ γ(Vi)) ∪RJ ,

Ei = (E ∩ γ(Vi)) ∩ δ(V Ji) and

Ei = {D ∈ E : D ⊆ Ei}.

Disjunctive graph Gi is called the insertion graph of job J with local flexibility at i.

As previously in graph G, we define selections in Gi, called insertions, as follows.
For any machine m ∈ Mi of operation i, let Gmi = (V mi , Ami , E

m
i , Emi , d) be the

subgraph of Gi obtained by deleting node sets Vim′ ,m
′ ∈ Mi − m, and denote by

V mJ = V Ji ∩ V mi the node set associated to J . Gmi may be called the insertion graph
of job J with i on m.

Definition 5 For any machine m ∈Mi and set of disjunctive arcs T ⊆ Emi , (m,T)
is called an insertion in Gi. Insertion (m,T) is complete if T ∩D 6= ∅ for all D ∈ Emi .
Insertion (m,T) is positive acyclic if subgraph (V mi , Ami ∪ T, d) contains no positive
cycle, and is positive cyclic otherwise. Insertion (m,T) is feasible if it is positive
acyclic and complete.

Obviously, any insertion (m,T) in Gi is positive acyclic (complete, feasible) if and
only if the corresponding selection (µ′, T ∪RJ) is positive acyclic (complete, feasible)
in G where µ′ is given by µ′(i) = m and µ′(j) = µ(j) for all j ∈ I − i.

Trivially, there is always a feasible insertion in Gi, namely (µ(i), TS) with TS =
S ∩ δ(V Ji), which corresponds to the selection (µ, S) in G.

3.3. Structural Properties of Job Insertion

As seen in the Example in Section 3.2, generating a neighbor solution simply by
replacing an arc e by its mate e may lead to an infeasible solution. In this section,
we consider structural properties of job insertion enabling us to generate feasible
insertions in the job insertion graph. Key ingredients are the short cycle property,
conflict graphs and a closure operator.

3.3.1. The Short Cycle Property

Given a job insertion graph Gi = (Vi, Ai, Ei, Ei, d) of some operation i ∈ I belonging
to some job J , we examine positive cycles in Gi.

CHAPTER 3. A SOLUTION APPROACH 43

We assume that the conjunctive part (Vi, Ai, d) of Gi does not contain any positive
cycle (otherwise no feasible insertion exists). Hence, any positive cycle Z has to
“visit” job J , i.e. Z ∩ δ(V Ji) 6= ∅.

All conjunctive arcs incident to job J , i.e. from δ(V Ji) − Ei, are of the type (σ, v)
or (v, τ). Such arcs do not appear in any cycle. In addition, all disjunctive arcs are
incident to job J , i.e. Ei ⊆ δ(V Ji). Hence, for any cycle Z, the disjunctive arcs of Z
are exactly those arcs of Z that are incident to job J , i.e. Z ∩ Ei = Z ∩ δ(V Ji).

The number of arcs of a cycle Z leaving J , i.e. |Z ∩ δ−(V Ji)| and entering J , i.e.
|Z ∩ δ+(V Ji)|, is equal, namely |Z ∩ δ(V Ji)| = 2|Z ∩ δ−(V Ji)| = 2|Z ∩ δ+(V Ji)| = 2k
for some k ≥ 0. The number k can be seen as the number of times cycle Z visits the
node set V Ji of job J , or short, visits job J .

An interesting structural property in relation with positive cycles is the so-called
Short Cycle Property (SCP), which was introduced in [42] for general disjunctive
graphs and is used here for job insertion graphs.

Definition 6 A job insertion graph Gi has the SCP if for any positive cycle with
arc set Z ′ in (V mi , Ami ∪ Emi , d),m ∈ Mi, there exists a “short positive cycle” Z in
(V mi , Ami ∪ Emi , d) with Z ∩ Emi ⊆ Z ′ ∩ Emi and |Z ∩ Emi | ≤ 2.

We say that a CJS problem has the SCP if for all operations i ∈ I, Gi has the SCP.

Introduce the following bipartition of the set of disjunctive arcs Ei = E−i ∪ E
+
i

where set E−i = Ei ∩ δ−(V Ji) and E+
i = Ei ∩ δ+(V Ji) correspond to the disjunctive

arcs in Gi entering and leaving job J , respectively.

Consider the positive acyclic insertions in Gi. They form an independence system,
i.e. every subset of a positive acyclic insertion is also positive acyclic, and the empty
set is a positive acyclic insertion. The “circuits” of this independence system are
the setwise minimal positive cyclic insertions where an insertion (m,T) is (setwise)
minimal positive cyclic if (m,T) is positive cyclic and any (m,T ′) with T ′ ⊂ T is
positive acyclic. Let C be the collection of all minimal positive cyclic insertions.

Proposition 7 Given a job insertion graph Gi = (Vi, Ai, Ei, Ei, d), the following
statements are equivalent:

(i) |C ∩ E−i | = 1 and |C ∩ E+
i | = 1 for all (m,C) ∈ C,m ∈Mi.

(ii) Gi has the SCP.

Proof. [The proof is similar to the proof of Proposition 3 in [42] and is given here
for completeness.]

(i)⇒(ii): Let Z ′ be a positive cycle in (V mi , Ami ∪ Emi , d) for some m ∈ Mi. The
insertion (m,Z ′∩Emi) is clearly positive cyclic, so there exists a minimal positive cyclic
insertion (m,C) ∈ C such that C ⊆ Z ′∩Emi and |C∩E−i | = 1 and |C∩E+

i | = 1. Since
insertion (m,C) is positive cyclic, there exists a positive cycle Z in (V mi , Ami ∪ C, d)
with Z ∩ Emi = C ⊆ Z ′ ∩ Emi and |Z ∩ Emi | = |C| = 2, proving (ii).

(ii)⇒(i): Suppose that Gi has the SCP. For any positive cyclic insertion (m,T),
there exists a short positive cycle Z in (V mi , Ami ∪ T, d) with |Z ∩ T | ≤ 2. Since
Z has to enter and leave job J at least once using both times one disjunctive arc,

44 3.3. STRUCTURAL PROPERTIES OF JOB INSERTION

|Z ∩ T | = 2, and |(Z ∩ T) ∩ E−i | = 1 and |(Z ∩ T) ∩ E+
i | = 1. Insertion (m,Z ∩ T)

is itself positive cyclic and contained in insertion (m,T). Hence, any positive cyclic
insertion is or contains a positive cyclic insertion consisting of exactly two disjunctive
arcs, one entering job J and one leaving job J , implying (i).

Not all CJS problems have the SCP. However, we now show that the class of
CJS problems without time lags possesses the property. Formally, a CJS problem
is called a CJS problem without time lags if for all operations i ∈ I and m ∈ Mi,
dlg(i,m) =∞.

To show that CJS problems without time lags have the SCP, we slightly adapt the
concept of through-connectedness introduced in [42]. The following notation will be
needed.

In Gmi = (V mi , Ami , E
m
i , Emi , d),m ∈Mi, let N− = {v ∈ V mJ : v = h(e) for some e ∈

Emi } and N+ = {v ∈ V mJ : v = t(e) for some e ∈ Emi } be the “entry” and “exit”
nodes of the arcs going into and out of (V mJ of) job J .

Consider the conjunctive part (V mi , Ami , d) of job insertion graph Gmi . For any

two nodes v, w ∈ V mi , let v 6→ w, v
0+−−→ w and v

+−→ w if no path, a path of non-
negative length and a path of positive length, respectively, exists from node v to w in
(V mi , Ami , d).

Definition 8 Gmi is a through-connected job insertion graph if the following holds:

a) for any disjunctive arcs e, e′ ∈ Emi , h(e) 6→ t(e′) or h(e)
0+−−→ t(e′).

b) For any distinct v1, v2 ∈ N− and distinct w1, w2 ∈ N+: if v1
0+−−→ w1 and

v2
0+−−→ w2, then v1

+−→ w2 or v2
+−→ w1.

Job insertion graph Gi is then called through-connected if Gmi is through-connected
for all m ∈Mi.

Note that through-connectedness is defined in [42] for graphs with non-negative arc
weights. This condition is replaced here by condition a).

Lemma 9 If Gi is a through-connected job insertion graph, then Gi has the SCP.

Proof. [The proof is similar to the proof of Lemma 8 in [42].]

We claim that for any positive cycle Z ′ in Gmi ,m ∈Mi, visiting job J k ≥ 1 times,
there exists a positive cycle Z with Z ∩ Emi ⊆ Z ′ ∩ Emi visiting job J exactly once.

We prove the claim by induction on the number of visits k. It trivially holds for
k = 1. Let Z ′ be a positive cycle in (V mi , Ami ∪ Emi , d) visiting J k > 1 times and
assume that the claim holds for positive cycles visiting J less than k times.

Rewrite Z ′ as the concatenation Z ′ = (e1, P1, e
′
1, Q1, e2, P2, e

′
2, Q2, . . . , ek, Pk, e

′
k,

Qk) where ei’s and e′i’s are arcs entering and leaving J , respectively, Pi’s are paths
joining node h(ei) ∈ N− and node t(e′i) ∈ N+ through arcs in γ(V mJ), i.e arcs between
nodes of job J , i = 1, . . . , k, and the Qi’s are paths joining h(e′i) to t(ei+1) through
arcs not in γ(V mJ), i = 1, . . . , k, (k + 1 ≡ 1).

CHAPTER 3. A SOLUTION APPROACH 45

Clearly, h(e1) 6= h(e2), t(e′1) 6= t(e′2), and by Definition 8 a) h(e1)
0+−−→ t(e′1),

h(e2)
0+−−→ t(e′2). Moreover, by Definition 8 b), i) h(e1)

+−→ t(e′2) or ii) h(e2)
+−→ t(e′1)

holds.

Consider case i) and let Pvw be a positive path joining v = h(e1) to w = t(e′2).
Clearly, path Pvw consists of arcs in γ(V mJ).

The paths Pi and Qi, i = 1, . . . , k start at a head node h(e) of an arc in e ∈ Emi
and end at tail node t(e) of an arc in e ∈ Emi . Hence by Definition 8 a), there exists
a non-negative length path joining h(e) to t(e). Let P ′i and Q′i be these non-negative
length paths corresponding to Pi and Qi. Clearly, P ′i consists of arcs in γ(V mJ) and
Q′i consists of arcs not in γ(V mJ).

Then, the concatenation W = (e1, Pvw, e
′
2, Q

′
2, . . . , ek, Pk, e

′
k, Q

′
k) is a closed walk

visiting job J at most k− 1 times, and there exists a decomposition of W into cycles
where each cycle visits J at most k times (cycle decomposition of an integer circu-
lation). The arcs and paths of concatenation W are all of non-negative length, and
Pvw is of positive length, hence W is of positive length. Thus, there exists a cycle Z ′′

of positive length in the decomposition visiting job J at least once and at most k− 1
times, and Z ′′ ∩Emi ⊆ Z ′ ∩Emi . Therefore, by induction, there exists a positive cycle
Z with Z ∩ Emi ⊆ Z ′ ∩ Emi visiting J exactly once.

Consider case ii) and let Pvw be a positive path joining v = h(e2) to w = t(e′1).
Clearly, path Pvw consists of arcs in γ(V mJ). The closed walk W = (e′1, Q

′
1, e2, Pvw)

is a positive cycle Z with Z ∩ Emi ⊆ Z ′ ∩ Emi visiting J exactly once.

Theorem 10 Given a job insertion graph Gi, i ∈ I, of a CJS problem without time
lags.

i) Gi has the SCP.

ii) |C ∩ E−i | = 1 and |C ∩ E+
i | = 1 for all (m,C) ∈ C,m ∈Mi.

Proof. For any m ∈ Mi we show that Gmi = (V mi , Ami , E
m
i , Emi , d) is through-

connected. Then, i) is implied by Lemma 9 and i) implies ii) by Proposition 7.

Note that in Gmi , the mode is fixed to µ′ where µ′(j) = µ(j) for all j ∈ I − i and
µ(i) = m. We show that a) and b) of Definition 8 are satisfied.

a) Consider paths from some node v to node w in Gmi where v = h(e) and w = t(e′)
for some e, e′ ∈ Emi . Either no path exists from v to w, or the length of a longest
path is non-negative. Indeed, as the time lag arcs are not present in Gmi , the only
arcs of negative weight are the transfer arcs of the type (v2

kµ′(k), v
3
jµ′(j)), where k is

the successor operation of j in some job. By considering the job structure, it is easy
to see that such negative weight transfer arcs are not on a longest path from v to
w. Hence, there is either no path from v to w or the longest path from v to w is of
non-negative length, proving a).

b) Let v1, v2 ∈ N−, v1 6= v2, and w1, w2 ∈ N+, w1 6= w2 such that v1
0+−−→ w1

and v2
0+−−→ w2. Nodes v1 and v2 ∈ N− are start nodes of some transfer steps of

operations belonging to job J , so v1 = v1
jµ′(j) or v1 = v3

jµ′(j) of some operation j ∈ J
and v2 = v1

kµ′(k) or v2 = v3
kµ′(k) of some operation k. Without loss of generality, we

may assume that operation j is before operation k in job J . By the job structure,

46 3.3. STRUCTURAL PROPERTIES OF JOB INSERTION

w1

v1

v2

w2

e

f

g

Figure 3.4.: The path from v1 to v2 (a part of the arcs in blue) is of positive length as arc
f or g is of positive weigth. Therefore, the path from v1 to w2 (in blue) is of
positive length.

there exists a non-negative path from v1 to v2 in (V mi , Ami , d), so v1
0+−−→ v2. If either

v1
+−→ v2 or v2

+−→ w2, then there exists a walk from v1 to w2 in (V mi , Ami , d) of positive
length. As (V mi , Ami , d) does not contain any positive cycles, there exists a path from

v1 to w2 in (V mi , Ami , d) of positive length, hence v1
+−→ w2. Otherwise, the longest

paths from v1 to v2 and from v2 to w2 must be of length 0. It remains to show that
at least one arc on a longest path from v1 to v2 or from v2 to w2 is of positive length.

If v1 = v1
jµ′(j) represents the start of the take-over step oj of j on machine µ′(j)

then by v1 ∈ N− some disjunctive arc e is incident to it (see illustration in Figure
3.4). Arc e is either sequencing j with respect to another operation on machine µ′(j),
then the duration of operation j on µ′(j) must be positive, or e is sequencing the
take-over step oj on µ′(j) with respect to another transfer step, then the duration of
the take-over step must be positive (by the standard assumptions of the CJS model,
see Section 2.4). In both cases, the longest path from v1 to v2 is of positive length.

If v1 = v3
jµ′(j) represents the start of the hand-over oj of j on machine µ′(j) then

by v1 ∈ N− some disjunctive arc e is incident to it. Arc e must be sequencing the
hand-over step oj on µ′(j) with respect to another transfer step. Hence, the duration
of the hand-over step oj must be positive. If k = j + 1 and v2 = v1

kµ′(k), then the
hand-over step oj is represented on a path from v2 to w2, so that the longest path
from v2 to w2 is of positive length, and otherwise, oj is represented on a path from
v1 to v2, so that the longest path from v1 to v2 is of positive length.

We remark here that there are CJS problems not belonging to the class of CJS
problems without time lags that also possess the SCP, among them the (flexible)
NWJSS problem. In the NWJSS, the time lag dlg(i,m) is equal to the processing
time dp(i,m) for all operations i ∈ I and machines m ∈ Mi. The proof of the SCP

CHAPTER 3. A SOLUTION APPROACH 47

e1 e1

e2 e2

e3 e3

e4 e4

e5 e5

e6 e6

Op. 2.1

Op. 2.2
on m3

Op. 2.3

e1 e1

e2 e2

e5 e5

e6 e6

Op. 2.1

Op. 2.2
on m5

Op. 2.3

Figure 3.5.: The conflict graphs Hm with m = m3 (left) and m = m5 (right) in the
Example.

for the NWJSS is different from the one given above, and we refer the reader to [42]
for further details. The NWJSS is not discussed further in this thesis, however we
point out the publication [20] on optimal job insertion in the no-wait job shop, where
a different job insertion based approach is used to solve the NWJSS.

3.3.2. The Conflict Graph and the Fundamental Theorem

The concept of conflict graphs introduced in [42] for general disjunctive graphs is used
here for job insertion graphs Gmi = (V mi , Ami , E

m
i , Emi , d),m ∈Mi.

Denote by Emi = Em−i ∪ Em+
i the bipartition of the set of disjunctive arcs in Gmi

where Em−i = Emi ∩ E
−
i and Em+

i = Emi ∩ E
+
i .

Definition 11 The conflict graph of job insertion graph Gmi = (V mi , Ami , E
m
i , Emi , d),

m ∈ Mi, is the undirected bipartite graph Hm = (Emi , U
m) where for any pair of

disjunctive arcs e, f ∈ Emi , edge (e, f) ∈ U is present in conflict graph Hm if insertion
(m, {e, f}) is a minimal positive cyclic insertion, i.e. (m, {e, f}) ∈ C for some m ∈
Mi.

Take again the Example and consider the job insertion graph of job 2 with local
flexibility at operation 2.2 (see Section 3.2). Figure 3.5 depicts its two conflict graphs
Hm with operation 2.2 assigned to machine m = m3 (left) and m = m5 (right).

We now establish the fundamental theorem stating that the feasible insertions are
precisely the stable sets (of a prescribed cardinality) in the conflict graphs Hm,m ∈
Mi.

48 3.3. STRUCTURAL PROPERTIES OF JOB INSERTION

m T

1 m3 e1, e2, e3, e4, e5, e6
2 m3 e1, e2, e3, e4, e5, e6
3 m3 e1, e2, e3, e4, e5, e6
4 m3 e1, e2, e3, e4, e5, e6
5 m5 e1, e2, e5, e6
6 m5 e1, e2, e5, e6
7 m5 e1, e2, e5, e6
8 m5 e1, e2, e5, e6
9 m5 e1, e2, e5, e6

Table 3.1.: All feasible insertions (m,T) in the Example.

Theorem 12 Let Gi be a job insertion graph with the SCP. There is a one-to-one
correspondence between the feasible insertions in Gi and the stable sets T in conflict
graphs Hm,m ∈Mi, satisfying T ⊆ Emi and |T | = |Emi |/2.

Proof. [The proof is similar to the proof of Theorem 5 in [42] and given here for
completeness.]

First, we show that any insertion (m,T),m ∈ Mi is positive acyclic if and only if
T ⊆ Emi and T is stable in Hm. Observe that T ⊆ Emi holds by definition for any
insertion (m,T). By Proposition 7, |C| = 2 for all (m′, C) ∈ C,m′ ∈Mi, therefore an
insertion (m,T) is positive acyclic if and only if |T ∩C| ≤ 1 for all (m,C) ∈ C. These
are precisely the conditions for insertion (m,T) to be stable in Hm and satisfying
T ⊆ Emi .

We now show that |T ∩ Emi | = |Emi |/2. Since we assume that all disjunctive pairs
D = {e, e} ∈ Ei are positive cyclic by (2.24), |T ∩ D| ≤ 1 for all D ∈ Emi , hence
|T | ≤ |Emi |/2. If additionally |T | = |Emi |/2, then |T ∩ D| = 1 for all D ∈ Emi , so
that (m,T) is also complete, hence feasible. Conversely if (m,T) is feasible, (m,T) is
positive acyclic and |T ∩D| = 1 for all D ∈ Emi , hence |T | = |Emi |/2.

Consider the feasible insertions in the Example, which clearly belongs to the class
of CJS problems without time-lags and therefore possesses the SCP. By Theorem
12, we can generate all feasible insertions by computing for each machine m ∈Mi all
stable sets T of cardinality |T | = |Emi |/2 in conflict graph Hm. The obtained nine
feasible insertions are listed in Table 3.1 using the notation introduced in Figure 3.3.
The corresponding schedules are given in Figure 3.6 (with operation 2.2 on machine
m3) and in Figure 3.7 (with operation 2.2 on machine m5).

3.3.3. A Closure Operator

Consider again the Example and the current feasible insertion of job 2 given in Figure
3.1 (which is the insertion #2 in Table 3.1). The representation of this insertion as a
stable set in conflict graph Hm3 is depicted by the red nodes in Figure 3.8.

CHAPTER 3. A SOLUTION APPROACH 49

4 8 12 16 20 24 28

t
m1

m2

m3

m4

m5

1.1 3.2 2.3

1.2 3.3 2.1

3.1 1.3 2.2

(1)

4 8 12 16 20 24 28

t
m1

m2

m3

m4

m5

1.1 3.2 2.3

1.2 2.1 3.3

3.1 1.3 2.2

(2)

4 8 12 16 20 24 28

t
m1

m2

m3

m4

m5

1.1 2.3 3.2

2.1 1.2 3.3

2.2 3.1 1.3

(3)

4 8 12 16 20 24 28

t
m1

m2

m3

m4

m5

2.3 1.1 3.2

2.1 1.2 3.3

2.2 3.1 1.3

(4)

Figure 3.6.: The schedules of the feasible job insertions with operation 2.2 on machine m3.
The number in brackets refers to the number assigned in Table 3.1.

50 3.3. STRUCTURAL PROPERTIES OF JOB INSERTION

4 8 12 16 20 24 28

t
m1

m2

m3

m4

m5

1.1 3.2 2.3

1.2 3.3 2.1

3.1 1.3

2.2(5)

4 8 12 16 20 24 28

t
m1

m2

m3

m4

m5

1.1 3.2 2.3

1.2 2.1 3.3

3.1 1.3

2.2(6)

4 8 12 16 20 24 28

t
m1

m2

m3

m4

m5

1.1 3.2 2.3

2.1 1.2 3.3

3.1 1.3

2.2(7)

4 8 12 16 20 24 28

t
m1

m2

m3

m4

m5

1.1 2.3 3.2

2.1 1.2 3.3

3.1 1.3

2.2(8)

4 8 12 16 20 24 28

t
m1

m2

m3

m4

m5

2.3 1.1 3.2

2.1 1.2 3.3

3.1 1.3

2.2(9)

Figure 3.7.: The schedules of the feasible job insertions with operation 2.2 on machine m5.

CHAPTER 3. A SOLUTION APPROACH 51

e1 e1

e2 e2

e3 e3

e4 e4

e5 e5

e6 e6

Op. 2.1

Op. 2.2
on m3

Op. 2.3

Figure 3.8.: The current insertion (red nodes) in conflict graph Hm3 .

We noted in Section 3.2.1 that replacing arc e4 = (v4
1.3,m3

, v1
2.2,m3

) by its mate e4

leads to an infeasible solution and stated that other changes are needed to maintain
feasibility. This can now be illustrated in the conflict graph Hm3 of the Example. By
Theorem 12, any feasible insertion containing e4 corresponds to a stable set T in Hm

with e4 ∈ T and |T | = |Emi |/2 = 6. Let us construct such a neighbor insertion step
by step.

Clearly, T must contain either ei or ei, i = 1, . . . , 6, as T = |Emi |/2 and (ei, ei) ∈ Um
for all i = 1, . . . , 6. Since (e4, e1) ∈ Um, we cannot choose e1, hence e1 ∈ T , and
similarly, e2 ∈ T must be part of our feasible insertion T . e1 and e2 are said to be
implied by e4. Then, e1 implies another disjunctive arc, namely e3, and similarly e3

implies e6. By these implications, T must contain {e1, e2, e3, e4, e6}.
The “remaining” pair is {e5, e5} and in order to be “close” to the current insertion,

we choose the arc e5 present in the current insertion, obtaining the feasible neighbor
insertion T = {e1, e2, e3, e4, e5, e6}, which is the insertion #3 in Table 3.1.

Formally, the implications sketched above can be described as follows. For any
e, f ∈ Emi in conflict graph Hm = (Emi , U

m) let

e→ f ⇔ (e, f) ∈ Um.

Definition 13 A sequence P = (e0, e1, . . . , en), n ≥ 0, of distinct nodes in Hm =
(Emi , U

m) is an alternating path from e0 to en if ei → ei+1 for all 0 ≤ i < n. For any
two nodes e, f ∈ Emi , we write e f if there exists an alternating path from e to f
in Hm.

The alternating paths capture the concept of implied disjunctive arcs. Indeed, if
some e is to be part of a feasible insertion, then all f ∈ Emi with e f must be part

52 3.3. STRUCTURAL PROPERTIES OF JOB INSERTION

of that insertion. Similarly, if a set Q of disjunctive arcs is to be part of a feasible
insertion, all f ∈ Emi that are reachable by an alternating path starting at some e ∈ Q
are implied. This leads to the following definition.

Definition 14 For any Q ∈ Emi , the closure of Q is the set

Φ(Q) = {f ∈ Emi : e f for some e ∈ Q}. (3.2)

Also Q ⊆ Emi is said to be closed if Q = Φ(Q).

Observe that e e holds for any e ∈ Emi . Moveover, Φ(Q) can be rewritten as
Φ(Q) =

⋃
e∈Q Φ(e). Then, it is easy to see that Φ is a well-defined topological clo-

sure operator fulfilling the following properties: i) Φ(∅) = ∅ (preservation of nullary
unions), ii) Q ⊆ Φ(Q) (inflationary), iii) Q ⊆ R ⇒ Φ(Q) ⊆ Φ(R) (monotone), iv)
Φ(Φ(Q)) = Φ(Q) (idempotence) and v) Φ(Q ∪ R) = Φ(Q) ∪ Φ(R) (join homomor-
phism).

Obviously, depending on the choice of the set Q, there exists a feasible insertion
(m,T) containing Q or not. The following questions arise naturally: For which sets Q
do feasible insertions containing Q exist, and if they exist, how are they constructed.
These questions are addressed now.

The following definitions are needed. For any subset of nodes T ∈ Emi , the span
[T] of T contains all nodes of T and all mates e of e ∈ T . Formally,

[T] = {e ∈ Emi : {e, e} ∩ T 6= ∅}.

Also, for any set Q ⊆ Emi , let HQ = (EQ, UQ) be the bipartite subgraph of
Hm = (Emi , U

m) obtained by deleting node set [Q], i.e. all nodes of the span of
Q are deleted, and denote by EQ−, EQ+ its node bipartition. Observe that a pair
{e, e} ∈ EQ is either present in HQ or not, so that |EQ−| = |EQ+|.

Theorem 15 For any Q ⊆ Emi , (m,T) is a feasible insertion with Q ⊆ T if and
only if T = Φ(Q) ∪ T ′ where Φ(Q) is stable in Hm and T ′ is stable in HΦ(Q) with
T ′ = |EΦ(Q)|/2.

Proof. [The proof is similar to the proof of Theorem 9 in [44].]

Let (m,T) be a feasible insertion with Q ⊆ T . By Theorem 12, T is stable in Hm

and |T | = |Emi |/2. We show first that Φ(Q) ⊆ T , i.e. if e ∈ Q and e f , then f ∈ T .
Indeed let P = (e = e0, e1, . . . , en = f) be an alternating path from e to f . Assume
ek−1 ∈ T for some k > 0. Since T is stable in Hm and (ek−1, ek) ∈ Um, ek /∈ T, and
since (m,T) is complete, ek ∈ T .

Since Φ(Q) ⊆ T,Φ(Q) is stable in Hm and, choosing T ′ = T ∩ EΦ(Q), T ′ is stable
in HΦ(Q) with |T ′| = |EΦ(Q)|/2, proving necessity.

Conversely, assume Φ(Q) stable in Hm and T ′ ⊆ EΦ(Q) stable in HΦ(Q) with
|T ′| = |EΦ(Q)|/2. Let T = Φ(Q)∪T ′. Clearly Φ(Q)∩T ′ = ∅ and |T | = |Φ(Q)|+ |T ′| =
|[Φ(Q)]|/2 + |EΦ(Q)|/2 = |Emi |/2, hence (m,T) is complete. T is also stable in Hm.
Indeed, suppose there exists (f, g) ∈ Um with f ∈ Φ(Q), g ∈ T ′. By construction of

CHAPTER 3. A SOLUTION APPROACH 53

HΦ(Q), g 6= f . Also, e f for some e ∈ Q, but then (f, g) ∈ Um and g 6= f imply
that e g, and therefore g ∈ Φ(Q), a contradiction to g ∈ T ′ ⊆ EΦ(Q). Therefore,
T = Φ(Q) ∪ T ′ is stable in Hm with |T | = |Emi |/2, hence is a feasible insertion by
Theorem 12, proving sufficiency.

Corollary 16 For any Q ⊆ Emi , there exists a feasible insertion (m,T) with Q ⊆ T
if and only if Φ(Q) is stable in Hm.

Proof. There always exists T ′ ⊆ EΦ(Q) stable in HΦ(Q) with |T ′| = |EΦ(Q)|/2,
namely T ′ = EΦ(Q)− or T ′ = EΦ(Q)+. Therefore Φ(Q) is stable in Hm is a sufficient
condition for the existence of a feasible insertion (m,T) with Q ⊆ T .

3.4. Neighbor Generation

In this section, we use the results of the previous sections to derive feasible neighbors in
CJS problems possessing the SCP. We first recall the local search principle introduced
in Section 3.2 using the notation and terms introduced so far.

Given is a feasible selection (µ, S) of some CJS problem with the SCP. Select some
operation i ∈ I of some job J and consider the job insertion graph Gi of job J with
local flexibility at i. Let (µ(i), TS) with TS = S ∩ δ(V Ji) be the insertion of job J
that corresponds to the current selection and RJ = S−TS the part of S not incident
to J . A feasible neighbor selection can be constructed by building a feasible neighbor
insertion (m,T) of (µ(i), TS) in job insertion graph Gi, and letting neighbor selection
be (µ′, S′) where µ′(i) = m, µ′(j) = µ(j) for all j ∈ I − i and S′ = T ∪RJ .

We build a neighbor insertion (m,T) by keeping the machine assignment for op-
eration i and forcing some disjunctive arc f /∈ TS to be in the insertion, building a
so-called “non-flexible” neighbor (m,Tf) with m = µ(i), or by assigning operation i
to another machine and inserting it on this machine forcing some arc set F to be in
the insertion, building a so-called “flexible” neighbor (m,TF) with m 6= µ(i). Arcs
F will be chosen to “position” operation i on machine m with respect to the other
operations on m and with respect to take-over and hand-over steps in conflict with
steps of i.

We show first how to build a non-flexible neighbor (m,Tf) and then a flexible
neighbor (m,TF).

3.4.1. Non-Flexible Neighbors

Non-flexible neighbors (m,Tf) with m = µ(i) are constructed by the following two
successive steps: i) Take f and all arcs implied by f , forming Φ(f), ii) keep TS on
the remaining part. Specifically,

Tf = Φ(f) ∪ TS − [Φ(f)]. (3.3)

Theorem 17 Insertion (m,Tf) with m = µ(i) given by (3.3) is a feasible neighbor
insertion of (µ(i), TS).

54 3.4. NEIGHBOR GENERATION

Proof. It is sufficient to show that i) Q = Φ(f) is stable in conflict graph Hm and
ii) TS − [Q] is stable in HQ with |TS − [Q]| = |EΦ(Q)|/2, and to apply Theorem 15.

i) Clearly, if f ∈ Em−i then Φ(f) ⊆ Em−i and if f ∈ Em+
i then Φ(f) ⊆ Em+

i , hence
Φ(f) is stable in Hm.

ii) Since (µ(i), TS) is a feasible insertion and m = µ(i), TS is stable in Hm, hence
TS − [Q] is stable in subgraph HQ. Also, |TS − [Q]| = |EQ|/2 since |TS ∩ {g, g}| = 1
for all {g, g} ⊆ EQ.

3.4.2. Flexible Neighbors

Flexible neighbors (m,TF) with m 6= µ(i) are constructed as follows. In order to
generate a “close” neighbor insertion, the choice of arc set F is made such that i is
likely to be scheduled at a time not too far from its time in the current schedule. For
this reason, we consider the starting times of the operations in the current schedule.
If the take-over of an operation j on m starts not earlier than the hand-over of i, we
choose to sequence i before j. Moreover, if some transfer step o′ of operation j on
µ(j), j belonging to some job K 6= J , is in conflict with a transfer step o = oi or
o = oi of i on m, i.e. {(o,m), (o′, µ(j))} ∈ V and o′ starts not earlier than o′ in the
current schedule, then we choose to sequence o before o′.

Specifically, F is built as follows. Let α(v), v ∈ V µ, be the earliest starting times
computed in graph G(µ, S) of the current selection (µ, S). Let F = F1 ∪ F2 ⊆ Em+

i

where F1 = {e ∈ δ+(v2
im) : α(h(e)) ≥ α(v1

i,µ(i))} and F2 = {e ∈ δ+(v4
im) : α(h(e)) ≥

α(v3
i,µ(i))}.

Let Tm = TS ∩ Emi . Neighbor (m,TF) is then constructed by the following three
successive steps: i) Take F and all arcs implied, forming Φ(F), ii) place before i all
operations on m that have not already been sequenced with respect to i in step i), and
similarly, place before the transfer steps of i all transfer steps in conflict with these
steps that have not already been sequenced in step i), forming Φ(Em−i − [Φ(F)]), iii)
keep Tm on the remaining part. Specifically,

TF = Q ∪ (Tm − [Q]) where (3.4)

Q = Φ(F) ∪ Φ(Em−i − [Φ(F)]) (3.5)

Theorem 18 Insertion (m,TF) given by (3.4) and (3.5) is a feasible neighbor inser-
tion of (µ(i), TS).

Proof. [The proof is similar to the proof of Theorem 11 in [44].]

We prove that (m,TF) is a feasible insertion in Gmi with conflict graph Hm by
showing i) Q = Φ(Q), ii) Q is stable in conflict graph Hm and iii) Tm − [Q] is stable
in HQ with |Tm − [Q]| = |EΦ(Q)|/2, and applying Theorem 15.

i) Let P = Φ(F). Since both sets P and Φ(E′ − [Φ(F)]) are closed, their union Q
is also closed, i.e. Q = Φ(Q) (join homomorphism of the closure Φ).

CHAPTER 3. A SOLUTION APPROACH 55

ii) First, F ⊆ Em+
i , implies P = Φ(F) ⊆ Em+

i , and similarly, E′ ⊆ Em−i implies
Φ(E′ − [P]) ⊆ Em−i , hence both sets Φ(F) and Φ(E′ − [P]) are stable in Hm. Next,
observe that

a /∈ [P] and b ∈ P ⇒ (a, b) /∈ Um (3.6)

since b ∈ P, a 6= b, (a, b) ∈ Um implies a ∈ P. Furthermore,

[P] ∩ Φ(E′ − [P]) = ∅ (3.7)

Indeed, suppose g ∈ [P]∩Φ(E′− [P]) Then there exists f ∈ E′− [P] such that f g.
On a corresponding alternating path form f to g, there is an edge (a, b) ∈ Um with
a ∈ E′ − [P] and b ∈ P , contradicting (3.6). As a result, by (3.6) and (3.7), Q is
stable in Hm.

iii) Since (µ(i), TS) is a feasible insertion, Tm = TS ∩ Emi is stable in Hm, hence
Tm − [Q] is stable in subgraph HQ. Also, Tm − [Q] = |EQ|/2, since |T ′ ∩ {f, f}| = 1
for all {f, f} ⊆ EQ.

3.4.3. A Neighborhood

In principle, the generation schemes described in Section 3.4 allow to define a large
set of neighbors given the possible choices of operation i, machine m and disjunctive
arc f . In order to generate neighbors that are potentially better than the current
solution, we may restrict the choices, having the following idea in mind.

The makespan of a selection (µ, S) is determined by a longest path from σ to τ in
graph G(µ, S) = (V µ, Aµ ∪ S, d). Let L be the arc set of such a longest path. Any
selection (µ′, S′) containing in graph G(µ′, S′) arc set L, i.e. L ⊆ Aµ

′ ∪ S′ cannot
have a smaller makespan than (µ, S). In order to improve (µ, S), we must “destroy”
path L by replacing some disjunctive arc on L.

The selected disjunctive arcs on L, i.e. S ∩ L, are usually called critical arcs. For
any arc e ∈ S, let i be the tail operation of e if t(e) ∈ Viµ(i) and the head operation
of e if h(e) ∈ Viµ(i). Operations that are tail or head operations of critical arcs are
called critical operations.

The following neighbor insertions are considered. For each critical arc e and incident
operation i (i.e. the tail and head operation of e), we build a neighbor insertion (m,Tf)
in Gi based on replacing arc e by its mate e according to (3.3) with m = µ(i) and
f = e. Additionally, for each critical operation i and machine m ∈ Mi − µ(i), we
build neighbor insertion (m,TF) in Gi according to (3.4) and (3.5) with i assigned to
m.

The neighborhood consisting of all described neighbors will be referred to as N ,
and let N (µ, S) be the set of neighbors of selection (µ, S). The size of neighborhood
N depends on the number of critical arcs, critical operations and the degree of the
routing flexibility. Two neighbors are built for each critical arc e and one for each
critical operation i and machine m ∈Mi − µ(i).

56 3.5. THE JOB INSERTION BASED LOCAL SEARCH (JIBLS)

3.5. The Job Insertion Based Local Search (JIBLS)

In principle, neighborhood N can be used in any local search scheme such as hill
climbing and descent methods, tabu search and simulated annealing. In the JIBLS, a
tabu search with some general features that proved useful in local search for scheduling
problems is applied.

In this section, we first describe the general principles of local and tabu search,
and discuss then the tabu search we used in the JIBLS, providing also a pseudo-code
implementation.

3.5.1. From Local Search to Tabu Search

Local search methods are based on the exploration of a set of solutions by repeatedly
moving from the current solution to another solution located in the current solution’s
neighborhood, aiming to reach an optimal or at least a good solution. As input, local
search uses an initial solution s, a neighborhood function defining for any solution s
a set of neighbor solutions N(s), an objective function assigning an objective value
f(s) to any solution s, and a stopping criterion. Local search acts then as follows.
As long as the stopping criterion is not met, the neighborhood N(s) of the current
solution s is evaluated and the best neighbor s∗ is set as current solution, i.e. s := s∗.

Assume that we have a minimization problem, i.e. we are seeking a solution s
minimizing f(s). Then, the “best” neighbor s∗ in the neighborhood of s may be
in the simplest case the neighbor with the minimum objective value, so s∗ is such
that f(s∗) = min{f(s′) : s′ ∈ N(s)}, and we may stop the search if f(s∗) ≥ f(s),
i.e. there is no better solution in the neighborhood of s, so that s is a local optimal
solution with respect to neighborhood N . This local search technique is well-known
as steepest descent.

If such a descent method is applied, it reaches at best, i.e. if the search terminates,
a local optimal solution. It is a well suited method if all local optimal solutions are
global optimal or at least of an acceptable solution quality. In the other case, however,
the descent method may be trapped in a local optimal solution of poor quality.

In most scheduling problems tackled with local search procedures, the quality of
local optima cannot be guaranteed. In fact, local optima with poor objective value are
quite common. Therefore, procedures have been devised that can escape from local
optimal solutions. For this purpose, moves from the current solution s to a solution
s∗ with f(s∗) ≥ f(s), i.e. non-improving moves, are being allowed to some extent.
Accepting non-improving moves has however one severe drawback; cycling may occur
making the local search to visit repeatedly the same solution.

In order to avoid being trapped in such cycles, the tabu search approach uses
a memory structure called tabu list. In the tabu list, moves that could lead to a
recently visited solution are penalized or forbidden. Such moves are said to be tabu.
The “best” neighbor is then determined with respect to the objective function and
the tabu list (see e.g. Glover and Laguna [38]). For any solution s and tabu list L, let
function g(s, L) assign a penalization value. Then, a general form of the tabu search
may look as follows.

CHAPTER 3. A SOLUTION APPROACH 57

Given some initial solution s and let tabu list L := ∅ and ŝ := s is the best solution
found so far.
While the stopping criterion is not satisfied do:

(i) Generate neighborhood N := N(s);
(ii) Determine the best neighbor s∗ ∈ N with respect to the objective function f

and penalization function g;
(iii) If f(s∗) < f(ŝ) then update ŝ := s∗;
(iv) Set s := s∗;
(v) Update tabu list L;

In its simplest form, the tabu list L is a list of bounded size, say |L| ≤ maxL,
containing the last maxL visited solutions. Then, a solution s′ is called tabu if s′ ∈ L.
The best neighbor may be determined as follows. Let g(s′, L) = B if neighbor s′ ∈ L
where B is a large number and g(s′, L) = 0 if s′ /∈ L. Then, the “corrected” objective
value h(s′, L) of a neighbor s′ is h(s′, L) = f(s′) + g(s′, L), and the best neighbor s∗

is such that h(s∗, L) = min{h(s′, L) : s′ ∈ N}. Updating the tabu list consists in
adding the new solution s∗ to L and removing the oldest entry if |L| > maxL.

It may be remarked that various tabu search versions exist. For example, the
best neighbor may be determined in another fashion, some subset of the neighbors
are generated instead of the whole neighborhood, or the tabu list may contain some
attributes of forbidden solutions instead of the entire solutions. For more details, we
refer the reader to the seminal articles of Glover [37, 39, 38].

3.5.2. The Tabu Search in the JIBLS

We now present the tabu search used in the JIBLS. It is based on neighborhood N
developed in Section 3.4.3 and uses some general features that proved to be appro-
priate in local search methods for scheduling problems. The JIBLS can be used for
all CJS problems possessing the SCP.

A tabu list L is used that stores entries of the last maxL iterations. An entry
consists of some attributes of a solution, namely either a disjunctive arc or a machine
assignment of an operation. Initially, the list is empty. In an iteration, i.e. after
moving from the current selection (µ, S) to a neighbor selection (µ′, S′), the tabu list
L is obtained by dropping the oldest entry if |L| = maxL and adding at first position
arc e = f if the neighbor is generated with an insertion (m,Tf) with m = µ(i)
according to (3.3), or the entry (i, µ(i)) if operation i is moved from machine µ(i)
to m 6= µ(i) with insertion (m,TF) according to (3.4) - (3.5). Hence, the tabu list
L contains arcs that were forced to be replaced and machine assignments that were
changed. A neighbor (µ′, S′) is called tabu if S′ ∩ L 6= ∅ or µ′(i) = m for some
(i,m) ∈ L.

Based on the tabu list, the following penalization function g is used. If (µ′, S′) is
not tabu, g(µ′, S′;L) = 0, otherwise let k be the position of the first entry in the
tabu list giving the move a tabu status, i.e. L[k] ∈ S′ or µ′(i) = m for (i,m) = L[k]
where L[k] is the k’s entry in the list, then g(µ′, S′;L) = (maxL+ 1−k)B. Note that
number B is chosen such that it is larger than the makespan of any feasible selection.

58 3.5. THE JOB INSERTION BASED LOCAL SEARCH

In order to evaluate the neighborhood, we assign to each neighbor (µ′, S′) an ob-
jective value h(µ′, S′;L; z) based on its makespan ω(µ′, S′), the best makespan found
so far z and the penalization function g(µ′, S′;L) as follows. If ω(µ′, S′) < z, then
h(µ′, S′;L; z) = ω(µ′, S′), otherwise h(µ′, S′;L; z) = ω(µ′, S′) + g(µ′, S′;L). Hence,
the tabu status of a neighbor is not considered if the neighbor improves the best
makespan found so far. Such an “overrule” of the tabu status is used as the tabu list
may penalize attractive moves to new best solutions. The best neighbor (µ∗, S∗) of
(µ, S) is chosen such that h(µ∗, S∗;L; z) = min{h(µ′, S′;L; z) : (µ′, S′) ∈ N (µ, S)}.

The following two additional long term memory structures also used by Nowicki
and Smutnicki [84] in the JS are implemented to improve the performance of the tabu
search.

As the tabu search does not prevent being trapped in cycles that are longer than
maxL, we use a list C that keeps track of the sequence of makespans encountered
during the search. Cycles are detected by scanning list C for repeated subsequences.
Specifically, the search is said to be cycling at iteration k if there exists a period
δ,maxL < δ < maxIter such that C[k] = C[k − a ∗ δ] for a = 1, . . . ,maxC, where
C[j] is the makespan in iteration j, and maxC and maxIter are input parameters.

A list E of bounded length maxE of so-called elite solutions is maintained to
diversify the search. Initially, list E is empty and a new solution (µ, S) is added to
E if its makespan ω(µ, S) is lower than the best makespan found so far. If the tabu
search runs for a given number maxIter of iterations without improving the best
makespan, or if a solution has no neighbors, or if a cycle is detected, then the current
search path is terminated and the search is resumed from the last elite solution in
list E. For this purpose, an elite solution is stored together with its tabu list and all
neighbors that have not been directly visited from this solution. An elite solution is
deleted from E if its set of neighbors is empty.

As stopping criterion, we use the computation time of the tabu search and limit
this time to maxT .

The sketched tabu search is described in pseudocode in Listing 3.1. Note that time()
is a method returning the runtime of the algorithm and method isCycle(C, iter) is
the aforementioned cycle check.

CHAPTER 3. A SOLUTION APPROACH 59

Listing 3.1: The tabu search in the JIBLS.

1 i t e r := 0 ;
2 computeNeighbor := true ;
3 s a v e E l i t e := fa l se ;
4 l e t (µ, S) be the i n i t i a l s o l u t i o n ;

5 i n i t i a l i z e the best s o l u t i o n (µ̂, Ŝ) := (µ, S) ;
6 tabu l i s t L , e l i t e s o l u t i o n s E and makespan l i s t C are empty ;
7

8 while (time () < maxT) {
9 i t e r := i t e r + 1 ;

10 i f (computeNeighbor = true) {N := N (µ, S) ;}
11 generate a l l ne ighbors (µ′, S′) ∈ N ;
12 determine best ne ighbor (µ∗, S∗) o f N ;
13 i f (s a v e E l i t e = true and |N | > 1) {
14 remove (µ∗, S∗) from N ;
15 add (µ, S) with ne ighbors N and tabu l i s t L to E ;
16 i f (|E | > maxE){ remove o l d e s t entry in E ;}
17 s a v e E l i t e := fa l se ;
18 }
19 s e t (µ, S) := (µ∗, S∗) ;
20 update tabu l i s t T ;
21 s e t C[i t e r] := ω(µ∗, S∗) ;

22 i f (ω(µ∗, S∗) < ω(µ̂, Ŝ)) {
23 (µ̂, Ŝ) := (µ∗, S∗) ;
24 i t e r := 0 ;
25 s a v e E l i t e := true ;
26 } else i f (i s Cy c l e (C , i t e r) = true or i t e r > maxIter) {
27 i f (|E| = 0) { stop the search ;}
28 take the l a s t entry in E and remove i t from the l i s t ;
29 s e t (µ, S) , N and L accord ing to t h i s entry ;
30 computeN := fa l se ;
31 i t e r := 0 ;
32 s a v e E l i t e := true ;
33 }
34 }

Part II.

The JIBLS in a Selection
of CJS Problems

In this part, the CJS model and the JIBLS solution method developed in Part
I are tailored and applied to a selection of complex job shop problems. Some of
the selected problems have been studied by other authors and benchmarks are
available while the others are new. Among the first are the Flexible Job Shop with
Setup Times (FJSS), the Job Shop with Transportation (JS-T) and the Blocking
Job Shop (BJS), and among the second are the Flexible Blocking Job Shop with
Transfer and Setup Times (FBJSS), the Blocking Job Shop with Transportation
(BJS-T) and the Blocking Job Shop with Rail-Bound Transportation (BJS-RT).
The JS-T, BJS-T and BJS-RT are versions of the FJSS and FBJSS where the jobs
are transported from one machine to the next by robots.

In order to evaluate the performance of the JIBLS, we compare the obtained results
to the best methods of the literature for the problems with available benchmarks
and to results obtained by a MIP approach for the new problems.

CHAPTER 4

THE FLEXIBLE JOB SHOP WITH SETUP TIMES

4.1. Introduction

The Flexible Job Shop with Setup Times (FJSS) is an extension of the JS character-
ized by two additional features, namely sequence-dependent setup times and routing
flexibility. Setup times occur if a machine has to be somewhat prepared before ex-
ecuting an operation. The setup times may be sequence-dependent, i.e. the setup
time depends on the current and on the immediately preceding operation on the ma-
chine. Routing flexibility is the option to assign a machine for each operation from
an (operation-dependent) set of machines.

Both features are common in practice. Sequence-dependent setup times are for
example present when the machines are mobile and have to execute an idle move
between two consecutive operations. Routing flexibility is mainly achieved by the
availability of multiple identical machines and by a machine’s capability of performing
different operations. For further information, we point to Section 1.3 where both
features are also discussed.

This chapter is organized as follows. A selective literature review is given in the
following section. Section 4.3 formally introduces the FJSS. Section 4.4 shows that
the FJSS problem is an instance of the CJS model. A more compact disjunctive
graph formulation of the FJSS is given in Section 4.5, which is then used in Section
4.6 to discuss some problem specific properties. The chapter is concluded in Section
4.7 with extensive computational results.

4.2. A Literature Review

We give a selective literature review focusing on a survey and some recent publications
with current benchmarks.

64 4.2. A LITERATURE REVIEW

Literature related to the FJSS is mainly dedicated to the (non-flexible) Job Shop
with Setup Times (JSS), or to the Flexible Job Shop (FJS) (without setup times). We
first discuss selected papers dealing with the JSS, then we consider articles addressing
the FJS, and finally, we point to some papers dealing with the FJSS.

The JSS has received increased attention over the last years as stated by Allahverdi
in his survey on setup times [3]. Solution methods for this problem are generally based
on methods that proved valuable in the JS. For example, branch and bound methods
are applied by Brucker et al. [19] and Artigues and Feillet [6]. Vela et al. [112] develop
a local search based on neighborhoods that generalize well-known structures of the
JS. Balas et al. [9] adapt their famous shifting bottleneck procedure to incorporate
sequence-dependent setup times.

The FJS is an established problem in the scheduling literature and various solution
procedures have been developed for it. Brandimarte [12] decomposes the problem
in a routing and a JS scheduling subproblem and solves these problems with a tabu
search in a hierarchical manner. Hurink et al. [52] model the problem in a disjunctive
graph and develop a tabu search where neighbors are generated by assigning a critical
operation to another machine or moving an operation of a critical block before or after
all other operations of that block. In contrast to Brandimarte, they simultaneously
solve the machine assignment and operation sequencing problems. A similar approach
is taken by Mastrolilli and Gambardella [79]. They use a neighborhood based on
the extraction and re-insertion of an operation, and solve the re-insertion problem
in an optimal or near optimal fashion. Gao et al. [34] develop a hybrid genetic
algorithm with a variable neighborhood descent method where one or two operations
are extracted and re-inserted. Hmida et al. [51] consider a discrepancy search using
various neighborhoods that are based on rescheduling an operation. Finally, Kis [60]
considers the job shop with a more general routing flexibility. He describes the feasible
routings of a job as paths in a directed graph. A tabu search and a genetic algorithm
are developed for solving the problem. Both methods are based on the insertion of
a set of operations in a partial schedule and on the improvement of a schedule with
fixed routings by standard methods of the JS.

Considering both features, sequence-dependent setup times and routing flexibility,
appears to be a natural and interesting extension of the JSS and FJS. However,
only few papers address the FJSS. Focacci et al. [32] treat a general scheduling
problem with setup times and alternative machines, of which the FJSS is a special
case. They propose a heuristic based on constraint programming. Rossi and Dini
[101] formulate the FJSS problem in a disjunctive graph and solve it with an ant
colony based heuristic. The main ingredient is a list scheduling algorithm for the
generation of feasible solutions. Oddi et al. [85] develop a constraint programming
based method using an iterative flattening search, and Gonzalez et al. [41] construct
a neighborhood structure, which is used in a hybrid local search combining a tabu
search with a genetic algorithm.

CHAPTER 4. THE FLEXIBLE JOB SHOP WITH SETUP TIMES 65

4.3. A Problem Formulation

The FJSS is a version of the JS with sequence-dependent setup times and routing
flexibility.

Sequence-dependent setup times occur between two consecutive operations on a
machine. If two operations i and j are executed on machine m, and j immediately
follows i then a setup of duration ds(i,m; j,m) occurs between the completion of i and
the start of j. For each operation i ∈ I, an initial setup time ds(σ; i,m) and a final
setup time ds(i,m; τ) might be present. The final setup time is the minimum time
elapsing between the completion time of i and the overall finish time (makespan).

The routing flexibility is of the following type. Any operation i ∈ I needs one
machine for its execution. However, this machine is not fixed, but can be chosen
from a subset of alternative machines Mi ⊆ M . The processing duration dp(i,m) of
operation i can depend on the assigned machine m ∈Mi.

A few standard assumptions concerning the data are made. All durations are
non-negative, processing times dp(i,m) are positive and the setup times satisfy the
weak triangle inequality, i.e. for any operations i, j, k on a common machine m,
ds(i,m; j,m) + dp(j,m) + ds(j,m; k,m) ≥ ds(i,m; k,m).

The FJSS can then be stated as follows. A schedule consists of an assignment of
a machine and a starting time for each operation so that all constraints described in
the JS with the additional features given above are satisfied. The objective is to find
a schedule with minimal makespan.

4.4. The FJSS as an Instance of the CJS Model

A FJSS instance can be specified as an instance in the CJS model by applying the
following transformations.

In the FJSS it is assumed that an unlimited number of buffers is available, hence
there is always a buffer available to store a job after one of its operations is completed.

Buffers need to be specified in the CJS model. A buffer bJ is introduced for each job
J , and the set M of machines in the CJS instance consists of the machines specified
in the FJSS instance together with the introduced set of buffers {bJ : J ∈ J }. A
storage operation of duration 0 executed on buffer bJ is introduced between any two
consecutive operations of job J . Thus, a job in the CJS instance consists of the
operations in the FJSS instance together with the introduced storage operations.

The processing durations as well as the setup times between two consecutive oper-
ations on a machine are directly taken from the FJSS instance, and all setup times
on the buffers are set to 0. For all o ∈ {oi, oi}, i ∈ I,m ∈ Mi, the initial setup time
ds(σ; o,m) := ds(σ; i,m), the final setup time ds(o,m; τ) := ds(i,m; τ). For all i, j ∈ I
and m ∈Mi,m

′ ∈Mj , load duration dld(i,m), unload duration dul(i,m) and transfer
duration dt(i,m; j,m′) are 0, and the maximum time lag dlg(i,m) is∞ (not present).

We illustrate the disjunctive graph G of the FJSS problem formulated in the CJS
model by considering the job shop example introduced in Section 1.3 with the routing
flexibility given in Section 1.4.5 where the machines one and three are duplicated.

66 4.5. A COMPACT DISJUNCTIVE GRAPH FORMULATION

m1

m2

m3

m4

m5

b1

dp(1.1,m1) = 6

6

4

4

4

Figure 4.1.: Job 1 of the example. The machining arc weights are given. Nodes σ and τ
are omitted for clarity.

The processing durations are assumed to be independent of the used machines, i.e.
dp(i,m) = dp(i,m′). All setup times are set to 0. Figure 4.1 depicts job 1 of the
example.

Since the FJSS can be formulated as a CJS problem without time lags, the JIBLS
can be applied.

4.5. A Compact Disjunctive Graph Formulation

Clearly, the formulation of the FJSS in the CJS model is not compact. An operation
does not need to be detailed with its take-over, processing and hand-over steps as in
the CJS model.

A more compact disjunctive graph formulation of the FJSS is readily obtained
starting with the disjunctive graph formulation of the JS (see Section 2.2) and using
the modes as introduced in the CJS model (see Definition 3).

For each operation and each alternative machine, one node is introduced. Two
consecutive operations i, j in some job are linked by a processing arc. Any two
operations of the same job on a common machine are linked by a setup arc, and a
pair of disjunctive arcs is introduced between any pair of operations from distinct jobs
on a same machine.

Specifically, the disjunctive graph G′ = (V ′, A′, E′, E ′, d′) for the FJSS is con-
structed as follows. For each operation i and machine m ∈ Mi, a node vim is intro-
duced. Node set V ′ of G′ consists of the vim’s together with two additional nodes
σ and τ representing fictive start and end operations of duration 0 occurring before,
respectively after, all other operations, i.e. V ′ = ∪{vim : i ∈ I,m ∈Mi; {σ, τ}}.

The set of conjunctive arcs A′ consists of the following arcs: (i) For each operation
i ∈ I and machine m ∈ Mi, an initial setup arc (σ, vim) of weight ds(σ; i,m) and a

CHAPTER 4. THE FLEXIBLE JOB SHOP WITH SETUP TIMES 67

final setup arc (vim, τ) of weight dp(i,m) + ds(i,m; τ). (ii) For any two consecutive
operations i and j of a job J and machine m ∈ Mi, m

′ ∈ Mj , a processing arc
(vim, vjm′) of weight dp(i,m). (iii) For any operations i = Jr and j = Js of a job J
with 1 ≤ r < s ≤ |J | and machine m ∈ Mi ∩Mj , a setup arc (vim, vjm) of weight
dp(i,m) + ds(i,m; j,m).

The set of disjunctive arcs E′ consist of the following arcs. For any two oper-
ations i, j ∈ I of distinct jobs and machine m ∈ Mi ∩ Mj , two disjunctive arcs
(vim, vjm), (vjm, vim) with respective weights dp(i,m) + ds(i,m; j,m) and dp(j,m)+
ds(j,m; i,m).

The FJSS can be formulated as follows.

Among all feasible selections, find a selection (µ, S) minimizing the length of a
longest path from σ to τ in subgraph G′(µ, S) = (V ′µ, A′µ ∪ S, d′).

Two remarks are in order. First, while G′ has less nodes than G, the number of
disjunctive arc pairs is the same. In fact, it is easy to see that there is a one-to-one
correspondence between the selections in G and G′, and positive acyclic, complete
and feasible selections in G and G′ correspond. Second, any cycle in G′ is a positive
cycle (assuming positive processing times dp(i,m) for all i ∈ I and m ∈Mi).

4.6. Specifics of the Solution Approach

Some properties specific to the FJSS and which will be taken into account in the
JIBLS are now discussed. In order to simplify the proofs, we occasionally use the
compact disjunctive graph G′ instead of G, using in G′ similar notation as in G.

4.6.1. The Closure Operator

We show that the closure operator Φ is simpler in FJSS instances than in other
instances of the CJS model, e.g. a FBJSS (see Chapter 5).

Given some FJSS problem as an instance of the CJS model, let Gmi = (V mi , Ami ,
Emi , Emi , d) be the job insertion graph of some operation i ∈ I with i on machine
m ∈Mi and Hm = (Emi , U

m) its corresponding conflict graph.

Proposition 19 In Hm = (Emi , U
m), e→ f ⇔ e f .

Proof. We show transitivity of the relation →, i.e. e→ f and f → g implies e→ g.

Reasoning in the compact disjunctive graph G′, e→ f implies that {e, f} is positive
cyclic, i.e. there is a positive cycle Z1 in G′ with Z1∩E′ = {e, f}, and similarly f → g
implies that there exists a positive cycle Z2 in G′ with Z2∩E′ = {f, g}. Let P1 be the
path in Z1 from h(f) to t(f) and P2 the path in Z2 from h(f) to t(f). P1 contains e
and P2 contains g. Since h(f) = t(f) and t(f) = h(f), P1∪P2 is a closed walk. Hence
it contains a cycle Z which is positive since any cycle of G′ is positive, Z∩E′ = {e, g}
and therefore e→ g.

68 4.6. SPECIFICS OF THE SOLUTION APPROACH

σ

1.1

1.2 2.1

2.2

τ

m1

m2

0

0

0

0
1

1

1

1

1

14

4

1

1

2 4 6

t
m1

m2

1.1 2.2

1.2 2.1

Figure 4.2.: The compact disjunctive graph of a small FJSS example and a schedule ob-
tained by placing operation 1.1 before 2.2 and 1.2 before 2.1.

Using Proposition 19, we can rewrite the closure operator Φ (see Definition 14) in
the FJSS as follows, allowing to speed up the computation of the closure.

Φ(Q) = {f ∈ Emi : e f for some e ∈ Q} = {f ∈ Emi : e→ f for some e ∈ Q}

4.6.2. Feasible Neighbors by Single Reversals

In some instances, replacing a critical arc e ∈ S in selection (µ, S) by e according
to (3.3) yields a neighbor selection (µ, S ∪ e − e) that is feasible. We call this single
replacement of e by e a single reversal. We analyze cases in which a single reversal
yields a feasible selection.

It is well-known that selection (µ, S ∪ e − e) obtained by a single reversal of a
critical arc e is feasible in FJS instances (FJSS without setup times), see e.g. Balas
[8]. However, this is not always the case in FJSS instances with setup times, as one
can easily observe in the following small example.

Given are two jobs 1 and 2, both consisting of two operations (job 1: 1.1 and 1.2,
job 2: 2.1 and 2.2) and two machines m1,m2. All operations have a processing time
of 1. There is no routing flexibility, and operations 1.1 and 2.2 are executed on m1,
1.2 and 2.1 on m2. Setup times occur only on machine m1 and are of duration 3 for
each pair of operations on m1. Initial and final setup times are 0. In Figure 4.2, the
compact disjunctive graph G′ of this problem is depicted together with a schedule
where operation 1.1 is executed before 2.2 and 1.2 before 2.1.

Clearly, the disjunctive arc e = (v1.1,m1 , v2.2,m1) is a critical arc in the illustrated
solution. However, a single reversal of e forcing operation 2.2 to be executed before
1.1 on m1 is not feasible. Indeed, a positive cycle of length 7 composed of the four
arcs e = (v2.2,m1

, v1.1,m1
), (v1.1,m1

, v1.2,m2
), (v1.2,m2

, v2.1,m2
) and (v2.1,m2

, v2.2,m1
) is

obtained.

CHAPTER 4. THE FLEXIBLE JOB SHOP WITH SETUP TIMES 69

The example shows that in the presence of arbitrary setup times, a single reversal
might yield an infeasible selection. Nevertheless, for some “structured” setup times,
this does not occur.

Consider the following setup times called setup times based on job pairs. For all
ordered pairs of jobs (J,K), J,K ∈ J , a setup time sJK is defined. It is assumed
that sJJ = 0, and the triangle inequality is satisfied, i.e. for any triple of distinct jobs
J,K,L, the inequality sJK+sKL ≥ sJL holds. Between two consecutive operations i, j
on some machine m, i from job J and j from job K, a setup of duration ds(i,m; j,m) =
sJK occurs.

Setup times based on job pairs are often used in benchmark instances for the FJSS
(with and without flexibility). For example Brucker et al. [19] generated JSS instances
with setup times based on job pairs. Their instances are then used by various authors,
e.g. by Balas et al. [9], Vela et al. [112] and Artigues and Feillet [6]. Recently, Oddi
et al. [86] generated FJSS instances by taking the setup times of Brucker et al.

Single reversals of critical arcs are always feasible in FJSS instances with setup
times based on job pairs. Consider the compact disjunctive graph G′ of some FJSS
instance with setup times based on job pairs. Let (µ, S) be some feasible selection
with makespan ω and e ∈ S a critical arc from operations i of job J to operation j of
job K 6= J , i.e. e = (vi,µ(i), vj,µ(j)) is on a longest path L from σ to τ of length ω in

G′(µ, S) = (V
′µ, A

′µ ∪ S, d′).

Proposition 20 Selection (µ, S′) with S′ = S − e ∪ e is feasible in FJSS instances
with setup times based on job pairs.

Proof. Selection (µ, S′) is clearly complete. (µ, S′) is also positive acyclic. Assume
the contrary, i.e. there is a positive cycle Z ′ in (V

′µ, A
′µ ∪ S′, d′). By the SCP, there

exists a positive cycle Z such that Z ∩ S′ ⊆ Z ′ ∩ S′ and Z visits each job at most
once. Moreover, since S is feasible, (V

′µ, A
′µ ∪ S − e, d′) contains no positive cycle,

so Z must contain e = (vj,µ(j), vi,µ(i)).

Let P ⊆ S − e be the path in Z from node vi,µ(i) of operation i to node vj,µ(j)

of operation j. Path P starts at node vi,µ(i) in job J1 = J , eventually leaves job
J , traverses (possibly) intermediary jobs J2, . . . , Jp−1 and enters finally job Jp = K,
until it reaches node vj,µ(j). As e /∈ Z, also e /∈ P , so P does not go directly from
operation i to j, hence it visits after operation i another operation, say k 6= j.

The length d(P) of path P clearly satisfies

d(P) ≥ dp(i, µ(i)) + dp(k, µ(k)) +

p−1∑
q=1

sJq,Jq+1 .

By the setup triangle inequalities and as the processing times are positive, d(P) >
dp(i, µ(i)) + sJK . Then, there exists a walk from σ to τ in G′(µ, S) obtained from
L by substituting arc e by path P , and the length of the walk is ω + d(P) − d(e) =
ω + d(P) − (dp(i, µ(i)) + sJK) > ω. Since (µ, S) is positive acyclic, this walk is or
contains a path from σ to τ with length greater than ω, a contradiction.

We remark that a similar proof is possible without invoking the SCP.

70 4.6. SPECIFICS OF THE SOLUTION APPROACH

As a consequence of Proposition 20, non-flexible neighbors can be built by single
reversals of critical arcs in FJSS instances with setup times based on job pairs.

4.6.3. Critical Blocks

Consider the compact disjunctive graph G′ of some FJSS instance, and let L be a
longest path from σ to τ in graph G′(µ, S) of some selection (µ, S), and consider its
critical operations. A (setwise) maximal sequence i1, . . . , ik of at least two consecutive
critical operations using the same machine is called a critical block (cf. Brucker and
Knust [17], p. 245).

It is well-known that swaps of two operations in the inner part of a critical block
give no better neighbor if the FJSS instance has no setup times. Specifically, let
i1, . . . , ik be a critical block of length k > 3. Then, neighbors (µ, S − e ∪ e) with
e = (vir,m, vir+1,m), r ∈ {2, . . . , k−2}, (obtained by single reversals) have a makespan
that is no shorter than the makespan of the current selection (µ, S) (see e.g. Brucker
et al. [17], p. 246).

In FJS instances, we may not build a neighbor by reversing a critical arc, but
generate more promising moves, for example by moving an operation that is in the
inner part of a critical block either before or after this block. We call these moves
block moves.

Specifically, for each operation ir, 1 < r ≤ k, of a critical block i1, . . . , ik on machine
m, construct a neighbor insertion (m,Tf) in job insertion graph Gmir according to (3.3)
with arc f = (vir,m, vi1,m) placing operation ir before the first operation i1 of the
block, and similarly, for each operation ir, 1 ≤ r < k, of a critical block i1, . . . , ik,
construct a neighbor insertion (m,Tf) in job insertion graph Gmir according to (3.3)
with arc f = (vik,m, vir,m) placing operation ir after the last operation ik of the
block. Clearly, insertions (m,Tf) (and thus the corresponding selections) are feasible
according to Theorem 17.

Based on the block moves and neighborhood N , we build two new neighborhoods
N 1 and N 2. Neighborhood N 1 is obtained by taking the block moves together with
the flexible moves of N , and neighborhood N 2 is obtained by combining the block
moves with N . So N 1 ⊆ N 2 and N 2 −N 1 consists of the non-flexible moves in the
inner part of a critical block.

Two remarks are in order. First, the idea of moving an operation to the beginning or
end of its critical block has been used by several authors (see Brucker and Knust [17]).
In contrast to the job insertion based approach used here that always generates feasible
neighbors, they fix the sequences of all other operations, resulting in neighbors that
are sometimes infeasible. Second, although neighborhoods N 1 and N 2 are inspired
by properties of instances without setup times, we tested them also in instances with
setup times.

CHAPTER 4. THE FLEXIBLE JOB SHOP WITH SETUP TIMES 71

4.7. Computational Results

In this section, we present the results obtained by the JIBLS in FJSS and FJS in-
stances, and compare them to the state of the art, which is to our best knowledge
Oddi et al. [85] and Gonzalez et al. [41] in the FJSS and Mastrolilli and Gambardella
[79], Gao et al. [34] and Hmida et al. [51] in the FJS. The obtained results turn out
to be competitive with the state of the art in the FJSS instances and similar in the
simpler FJS instances.

The JIBLS described in Section 3.5 was implemented single-threaded in Java for
the FJSS in three versions using neighborhood N , N 1 and N 2, respectively. It was
run on a PC with 3.1 GHz Intel Core i5-2400 processor and 4 GB memory.

Extensive computational experiments on a set of 59 benchmark instances were
performed for the FJSS with and without setup times. We used the instances of Oddi
et al. [85] (with setup times), Barnes and Chambers [23] (without setup times) and
Dauzère-Pérès and Paulli [29] (without setup times).

The computational settings were set as follows. The initial solution was a permu-
tation schedule obtained by randomly choosing a job permutation and a mode. For
each instance and neighborhood, five independent runs with different initial solutions
were performed. The computation time of a run was limited to 600 seconds and the
tabu search parameters were set as maxt = 14, maxl = 300 and maxIter = 6000.

We first report on the instances with setup times, starting with a comparison of
the three neighborhoods N , N 1 and N 2 in the instances of Oddi et al. Table 4.1
shows the detailed numerical results as follows. The first block (columns 2-4) and
second block (columns 5-7) depicts the best and average results over the five runs,
respectively. The instances are grouped according to size, e.g. the first group 10× 5
consists of instances with 10 jobs and 5 machines. The best values of each block are
highlighted in boldface. The following observations can be made.

Comparing the best results (columns 2-4) over the five runs, neighborhoods N , N 1

and N 2 give the best values in 13, 10 and 19 instances (out of 20), and comparing
the average results (columns 5-7), N , N 1 and N 2 present in 10, 5 and 19 instances
the best values. In the instances of size 10 × 5 and 10 × 10 the results of the three
neighborhoods are quite the same, and in the instances of size 15 × 5 and 20 × 5
the respective results of neighborhoods N and N 1 are on average 0.6% and 2.6%
worse than the results of neighborhood N 2. Altogether, these numbers suggest that
neighborhood N 2 should give preference over N and N 1.

We now compare the obtained results with neighborhood N 2 to the best current
benchmarks for the FJSS to our knowledge, namely the benchmarks of Oddi et al.
[85] and Gonzalez et al. [41]. Table 4.2 displays for each instance the best and average
results over the five runs, together with benchmarks of Oddi et al. and Gonzalez et al.
We tried to use similar computation times as reported by these authors. Therefore, we
divided Table 4.2 into three blocks. The first block (columns 2-3) reports the average
results after 20 seconds (avg-20) and average results over 10 runs of Gonzalez et al.
with their method GA+TS (GVV1). In the second block (columns 4-5), the average
results after 600 seconds (avg-600) are compared with the benchmarks of Oddi et

72 4.7. COMPUTATIONAL RESULTS

best avg

N N 1 N 2 N N 1 N 2

10× 5
la01 721 726 721 721.0 727.2 721.0
la02 737 737 737 737.0 737.0 737.0
la03 652 652 652 652.0 652.0 652.0
la04 673 673 673 673.0 673.0 673.0
la05 602 602 602 602.8 602.8 602.2

15× 5
la06 947 954 943 951.6 961.0 947.2
la07 908 917 904 912.6 920.2 906.6
la08 940 937 940 940.0 963.8 940.0
la09 986 1001 986 990.0 1008.2 986.0
la10 952 970 952 952.2 977.2 954.4

20× 5
la11 1237 1263 1228 1246.8 1269.4 1233.8
la12 1079 1108 1072 1085.0 1118.6 1072.8
la13 1172 1202 1172 1184.0 1213.2 1173.2
la14 1232 1264 1221 1244.8 1274.0 1239.8
la15 1257 1288 1256 1274.4 1294.0 1260.0

10× 10
la16 1007 1007 1007 1007.0 1007.6 1007.0
la17 851 851 851 851.0 851.0 851.0
la18 985 985 985 988.2 991.4 988.2
la19 951 951 951 953.0 955.2 952.0
la20 997 997 997 997.0 997.0 997.0

Table 4.1.: Best and average results over the five runs with neighborhoods N , N 1 and N 2

in the FJSS instances (bold: best).

CHAPTER 4. THE FLEXIBLE JOB SHOP WITH SETUP TIMES 73

avg-20 GVV1 avg-600 ORCS1 best-600 GVV2 ORCS2

10× 5
la01 725.0 724 721.0 736 721 721 726
la02 741.8 737 737.0 749 737 737 749
la03 653.2 652 652.0 658 652 652 652
la04 675.8 675 673.0 686 673 673 673
la05 603.0 602 602.2 603 602 602 603
15× 5
la06 954.2 957 947.2 963 943 953 950
la07 915.6 911 906.6 966 904 905 916
la08 946.2 941 940.0 963 940 940 948
la09 990.4 995 986.0 1020 986 989 1002
la10 959.0 956 954.4 991 952 956 977
20× 5
la11 1246.4 1254 1233.8 1257 1228 1244 1256
la12 1077.4 1107 1072.8 1097 1072 1098 1082
la13 1186.0 1212 1173.2 1240 1172 1205 1215
la14 1258.6 1263 1239.8 1285 1221 1257 1285
la15 1278.0 1282 1260.0 1291 1256 1275 1291
10× 10
la16 1010.6 1007 1007.0 1012 1007 1007 1007
la17 851.0 851 851.0 868 851 851 858
la18 996.2 992 988.2 1025 985 985 985
la19 955.6 951 952.0 976 951 951 956
la20 999.2 997 997.0 1033 997 997 997

Table 4.2.: The results avg-20, avg-600, best-600 compared to benchmarks GVV1, ORCS1,
GVV2, ORCS2 in the FJSS instances (bold: best).

al. (ORCS1) obtained by their slack-based selection procedure and parameter value
γ = 0.3. The third block (columns 6-8) depicts the best results after 600 seconds
(best-600) and the best benchmarks reported by Gonzales et al. (GVV2) and Oddi
et al. (ORCS2). The following observations can be made.

Results avg-20 are similar to GVV1. On average avg-20 is 0.1% better than
GVV1, and most results are quite similar. Indeed, the relative deviation (avg-20 −
GVV1)/GVV1 is in 18 of 20 instances within a range of +/- 0.7%. The exceptions are
instances la11 and la12 where avg-20 is 2.7% and 2.1% better than GVV1. Results
avg-600 systematically dominate ORCS1. On average avg-600 is 2.6% better than
ORCS1. Finally, observing results best-600, it improves the best results of GVV2
and ORCS2 in 9 instances and matches it in the other 11 instances. Altogether,
our approach appears competitive in the FJSS when compared to the best current
benchmarks.

For the evaluation of the tabu search, it is also of interest to examine the evolution
of attained solution quality during computation. For this purpose, we recorded for
each instance and run the current best makespan ω at the beginning (initial solution)
of the tabu search and after 10, 20, 60, 120 and 300 seconds of computation time, and
calculated its relative deviation from the final makespan (ω−ωfinal)/ωfinal. Table 4.3
provides these deviations (in %) in columns 4 to 8 in an aggregated way, reporting
average deviations over runs and instances of the same size. Additionally, the average

74 4.7. COMPUTATIONAL RESULTS

size iter time 0 s 10 s 20 s 60 s 120 s 300 s

10 x 5 3’535’915 374 226.0% 0.6% 0.4% 0.2% 0.0% 0.0%
15 x 5 2’940’463 600 258.6% 1.0% 0.7% 0.1% 0.1% 0.0%
20 x 5 1’724’258 600 265.3% 1.6% 1.1% 0.4% 0.2% 0.0%
10 x 10 4’317’167 600 359.7% 0.8% 0.4% 0.2% 0.1% 0.1%

Table 4.3.: Average number of tabu search iterations, average runtime and relative devi-
ations of the makespan from the final makespan during runtime in the FJSS
instances.

number of tabu search iterations and the runtime are displayed in columns 2-3. The
following can be observed.

Initial solutions are far away from the obtained final solutions, with makespans
three to five times as large. Also, most of the improvements are found within seconds.
Consider for example the 10 × 10 instances. While the deviation is initially 359.7%,
it drops to 0.8% and 0.4% after 10 and 20 seconds. This improvement behavior can
be partly attributed to the rather high number of tabu search iterations; they are in
the range of 1.5 and 4.5 million. Altogether, these figures suggest good improvement
performance and convergence of the tabu search.

We now consider the instances without setup times. First, we compare the three
versions N , N 1 and N 2 with each other in the instances of Dauzère-Pérès and Paulli.
Table 4.4 provides detailed results as follows. The first block (columns 2-4) and
second block (columns 5-7) depicts the best and average results over the five runs,
respectively. The instances are grouped according to size. The best values of each
block are highlighted in boldface. The following observations can be made.

Comparing the best results (columns 2-4) over the five runs, neighborhoods N , N 1

and N 2 give the best values in 0, 17 and 2 instances (out of 20), and comparing the
average results (columns 5-7), N , N 1 and N 2 present in 0, 17 and 1 instances the
best values. On average, the respective results of neighborhoods N and N 2 are 1.6%
and 1.0% worse than the results of neighborhood N 1.

While N 2 appears to be the best neighborhood in the instances with setup times,
neighborhood N 1 should give preference in instances without setup times. This result
is not surprising having in mind that the difference of the two neighborhoods are the
swaps of operations in the inner part of a critical block that are present in N 2 but
not in N 1. It is well-known (and was discussed before) that these moves result in a
neighbor having no better makespan than the current solution in the FJS instances.
We observed that the number of cycling situations in the tabu search version with
neighborhoods N 2 is much higher than in the version with N 1.

We now compare the results obtained with neighborhood N 1 to the best current
benchmarks to our knowledge, namely the benchmarks of Mastrolilli and Gambardella
[79], Gao et al. [34] and Hmida et al. [51] in the instances of Barnes and Chambers
(denoted by BCdata) and Dauzère-Pérès and Paulli (denoted by DPdata). We tried
to use similar computation times as reported by the authors of the benchmarks.
Therefore, we compare the average results obtained after 20 seconds in the BCdata

CHAPTER 4. THE FLEXIBLE JOB SHOP WITH SETUP TIMES 75

best avg

N N 1 N 2 N N 1 N 2

10× 5
01a 2570 2505 2554 2628.4 2516.6 2606.6
02a 2243 2234 2235 2254.6 2238.4 2244.0
03a 2233 2230 2232 2240.8 2232.8 2234.4
04a 2581 2503 2529 2656.6 2506.2 2589.2
05a 2221 2218 2225 2236.0 2220.0 2241.8
06a 2217 2206 2204 2222.8 2208.8 2217.0
15× 8
07a 2390 2288 2385 2461.2 2317.0 2780.6
08a 2081 2074 2081 2098.2 2081.4 2090.2
09a 2071 2068 2075 2084.8 2074.0 2081.8
10a 2374 2266 2373 2617.2 2313.8 2393.0
11a 2080 2073 2075 2083.2 2078.4 2078.2
12a 2048 2039 2039 2064.4 2043.8 2052.6
20× 10
13a 2361 2262 2305 2431.0 2288.4 2327.4
14a 2196 2173 2184 2212.8 2186.0 2224.4
15a 2194 2174 2179 2217.2 2178.0 2185.2
16a 2339 2262 2313 2405.0 2276.4 2335.8
17a 2175 2148 2155 2189.4 2158.6 2171.4
18a 2167 2142 2149 2180.2 2150.0 2156.8

Table 4.4.: Best and average results over the five runs with neighborhoods N , N 1 and N 2

in the FJS instances (bold: best).

and after 200 seconds in the DPdata with the benchmark results. We also report
results obtained at termination of the tabu search (after 600 seconds). Table 4.5
displays the detailed results as follows. Instances of BCdata and DPdata are reported
in the upper and lower part, respectively. For each instance, the average results
after 20 seconds (avg-20 in BCdata), 200 seconds (avg-200 in DPdata), and 600
seconds (avg-600), and best results after 600 seconds (best) over the five runs are
reported. The average and best results are compared to the average and best results
of Mastrolilli and Gambardella (MG1, MG2), Gao et al. (GS1, GS2) and Hmida et
al. (HH1, HH2). These authors report average and best results over 4 to 5 runs. The
following observations can be made.

In both data sets, the results of the different methods are of similar quality. Indeed,
the relative deviation between the results is mostly within a range of +/- 1.0%. Now
considering results avg-20, they are slightly worse than MG1, GS1 and HH1. The rel-
ative deviation of avg-20 to MG1, GS1 and HH1, calculated as (avg-20−bench)/bench
where bench stands for the benchmark value, is 0.37%, 0.35% and 0.40% in BDdata,
and 0.61%, 0.65% and 0.65% in DPdata. If we allow 600 seconds of computation time
(see column avg-600), these deviations are -0.06%, -0.08% and -0.03% in the BCdata,
and 0.37%, 0.42% and 0.42% in the DPdata. While the results avg-600 appear to be
slightly better than the others in BCdata, GS1 seem to be slightly better than the
others in DPdata, but all differences are quite small.

We now compare the best results with benchmarks MG2, GS2 and HH2. Results
best, MG2, GS2 and HH2 give best values (among them) in 18, 14, 11, 13 instances

76 4.7. COMPUTATIONAL RESULTS

BCdata avg-20 avg-600 MG1 GS1 HH1 best MG2 GS2 HH2

mt10c1 933.2 927.4 928.0 927.2 928.5 927 928 927 928
mt10cc 911.6 909.2 910.0 910.0 910.8 908 910 910 910
mt10x 925.2 918.8 918.0 918.0 918.0 918 918 918 918
mt10xx 924.6 918.0 918.0 918.0 918.0 918 918 918 918
mt10xxx 919.6 918.0 918.0 918.0 918.0 918 918 918 918
mt10xy 907.6 905.0 906.0 905.0 906.0 905 906 905 906
mt10xyz 851.6 847.8 850.8 849.0 850.5 847 847 849 849
setb4c9 923.8 918.6 919.2 914.0 919.0 917 919 914 919
setb4cc 909.4 907.0 911.6 914.0 910.5 907 909 914 909
setb4x 926.4 925.0 925.0 931.0 925.0 925 925 925 925
setb4xx 926.4 925.0 926.4 925.0 925.0 925 925 925 925
setb4xxx 925.0 925.0 925.0 925.0 925.0 925 925 925 925
setb4xy 916.0 911.8 916.0 916.0 916.0 910 916 916 916
setb4xyz 909.4 905.0 908.2 905.0 906.5 905 905 905 905
seti5c12 1184.8 1174.2 1174.2 1175.0 1174.5 1174 1174 1175 1174
seti5cc 1142.0 1136.4 1136.4 1138.0 1137.0 1136 1136 1138 1136
seti5x 1212.0 1204.2 1203.6 1204.0 1201.5 1204 1201 1204 1201
seti5xx 1204.8 1202.6 1200.6 1203.0 1199.0 1198 1199 1202 1199
seti5xxx 1207.4 1201.2 1198.4 1204.0 1197.5 1197 1197 1204 1197
seti5xy 1142.0 1136.4 1136.4 1136.5 1138.0 1136 1136 1136 1136
seti5xyz 1135.8 1130.2 1126.6 1126.0 1125.3 1128 1125 1126 1125

DPdata avg-200 avg-600 MG1 GS1 HH1 best MG2 GS2 HH2

01a 2518.6 2516.6 2528.0 2518.0 2524.5 2505 2518 2518 2518
02a 2241.4 2238.4 2234.0 2231.0 2234.5 2234 2231 2231 2231
03a 2233.6 2232.8 2229.6 2229.3 2231.8 2230 2229 2229 2229
04a 2511.2 2506.2 2516.2 2518.0 2510.0 2503 2503 2515 2503
05a 2221.4 2220.0 2220.0 2218.0 2218.0 2218 2216 2217 2216
06a 2211.2 2208.8 2206.4 2198.0 2202.5 2206 2203 2196 2196
07a 2325.4 2317.0 2297.6 2309.8 2295.5 2288 2283 2307 2283
08a 2083.6 2081.4 2071.4 2076.0 2069.0 2074 2069 2073 2069
09a 2076.2 2074.0 2067.4 2067.0 2066.8 2068 2066 2066 2066
10a 2322.8 2313.8 2305.6 2315.2 2302.5 2266 2291 2315 2291
11a 2083.0 2078.4 2065.6 2072.0 2072.0 2073 2063 2071 2063
12a 2048.8 2043.8 2038.0 2031.6 2034.0 2039 2034 2030 2031
13a 2295.0 2288.4 2266.2 2260.0 2260.3 2262 2260 2257 2257
14a 2187.8 2186.0 2168.0 2167.6 2178.8 2173 2167 2167 2167
15a 2180.6 2178.0 2167.2 2165.4 2170.3 2174 2167 2165 2165
16a 2294.8 2276.4 2258.8 2258.0 2257.8 2262 2255 2256 2256
17a 2170.8 2158.6 2144.0 2142.0 2145.5 2148 2141 2140 2140
18a 2155.2 2150.0 2140.2 2130.7 2131.5 2142 2137 2127 2127

Table 4.5.: The results avg-20, avg-600, best compared to benchmarks MG1, GS1, HH1,
MG2, GS2, MG2 (bold: best) in the FJS instances.

CHAPTER 4. THE FLEXIBLE JOB SHOP WITH SETUP TIMES 77

100 200 300 400 500 600 700 800 900

t
m1

m2

m3

m4

m5

12.1 8.1 10.1 15.1 11.3 1.4 6.3 3
.213.5 4.4 9.4

1
4
.3 5.5 2
.5

1
.1 7.1 8.2 13.3 4.2 15.2 6.2 7.3

1
2
.4 2.3 3.3 14.2 5
.4

1
1
.5 9.5

9.1
1
1
.1

1
1
.2 1.2 6.1 12.3 8.3 13.4 3.1 10.515.3 5.3 2
.4 4.5

1
4
.4 7.5

2.1

1
3
.2 4.1 9
.2 7.2 5.2 10.3 10.4 11.4 6.4 1.5

1
2
.5

8
.5 3.4 14.5 15.5

13.1 14.1 5.1

1
2
.2

9
.3 10.2 1.3 2
.2 8.4 4.3

1
5
.4 6.5 7.4 3.5

Figure 4.3.: A schedule with makespan 943 of FJSS instance la06.

of BCdata, and in 3,10,10,14 instances of DPdata. These numbers support the view
that the different methods give quite similar results.

Altogether, the JIBLS appears to find good results compared to state of the art
methods also in the instances without setup times.

We conclude the discussion of the computational results with two Gantt charts.
Figure 4.3 depicts a schedule of instance la06 (with setup times) having makespan
943, and Figure 4.4 presents a schedule of instances mt10cc (without setup times)
having makespan 908. Thick bars represent the processing of the operations while
the narrow hatched bars illustrate setup times. The numbers refer to the operations,
e.g. 5.1 refers to the first operation of job 5.

78 4.7. COMPUTATIONAL RESULTS

100 200 300 400 500 600 700 800 900

t
m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

m11

m12

2.1 8.2 1.1 4.3

3.1 9.2

6.2

8.3 4.1 10.1 7.1 5
.3 1.2 2
.6

8.1 6.1 2.2 5
.1 3.4 4.2 10.3 9.5 7
.4

1.3

3.3 6.4 9.3 2.5 7.3 5
.5 1.4 10.8 4.8 8.10

2.3 8.5 4.4 5.6 1.5

3
.1

0

9
.9 10.9

6.9

7.10

6.3 8.4 9.4 3
.6 5.4 7
.6 10.7 1
.6 2.8 4.10

8.6
10.4

3.8 7.5
4.5

9.7 2.7 1.7 6.8 5.10

3
.7 9.8 5.8 1.8 7.910.10

3.5 6.5 10.5 8
.7 4.6 5
.7 7.8 9.10 1.9

2
.1

0

2
.4 6.6 9
.6 10.6 7.7 3.9 8.8 5.9 4
.9

1
.1

0

9.1 3.2

1
0
.2

5.2

7.2 6.7

4.7 8.9 2.9

6
.1

0

Figure 4.4.: A schedule with makespan 908 of FJS instance mt10cc.

CHAPTER 5

THE FLEXIBLE BLOCKING JOB SHOP
WITH TRANSFER AND SETUP TIMES

5.1. Introduction

The Flexible Blocking Job Shop with Transfer and Setup Times (FBJSS) is a version
of the Flexible Job Shop with Setup Times (FJSS) characterized by the absence of
buffers. In practice, many systems have limited or no buffers and considering the
buffer restrictions is important. Solutions that do not satisfy these constraints might
not be implementable.

An additional feature of the FBJSS will be transfer times for passing a job from a
machine to the next. This feature is useful in practice. Indeed, a job after completion
of an operation on a machine has to be handed over to its next machine. Such transfer
steps have to be taken into account if transfer times are not negligible. Transfers are
also important when considering transportation of the jobs, allowing to model the
transfer of a job from a mobile device to a machine, or vice versa. They take place at
a fixed location and may imply additional constraints if the mobile devices interfere
with each other in space (see Chapter 7). For further information, we point to Section
1.3 where the absence of buffers and the presence of transfer times are also discussed.

This chapter is organized as follows. A selective literature review is given in the
following section. Section 5.3 gives a formal description of the FBJSS, which is used
in Section 5.4 to formulate the problem in the CJS model. Extensive computational
results are given in Section 5.5. We conclude this chapter in Section 5.6 with remarks
on how limited buffers can be taken into account.

We remark that a good part of the material of this chapter is published [45].

80 5.2. A LITERATURE REVIEW

5.2. A Literature Review

We give a selective literature review focusing on a survey and some recent publications
with current benchmarks.

Literature related to the FBJSS is mainly dedicated to the non-flexible Blocking
Job Shop (BJS) without transfer and setup times and to the Blocking Job Shop with
Transfer and Setup Times (BJSS). Indeed, we are not aware of previous literature
on the blocking job shop with flexibility (except our publication [45]). Blocking con-
straints together with flexibility have been addressed in the simpler flow shop version
of the job shop by Thornton and Hunsucker [110].

The BJS has found increasing attention over the last years. Mascis et al. [76,
77] formulate several scheduling problems, among them the BJS, with the help of
alternative graphs and solve them with dispatching heuristics. Meloni et al. [80]
develop a “rollout” metaheuristic which they apply among other problems also to
the BJS. Brizuela et al. [13] propose a genetic algorithm for the BJS. Brucker et
al. [16] present tabu search algorithms for cyclic scheduling in the BJS. Van den
Broek [111] proposes a heuristic for the BJS that successively inserts optimally a
job. He formulates each job insertion as a mixed integer linear programming problem
and solves it with CPLEX. He also develops an exact approach based on branch and
bound, using his heuristic solution as an initial upper bound. Oddi et al. [87] develop
two iterative improvement algorithms for the BJS based on flattening search and on
the constraint programming solver of IBM ILOG. Pranzo and Pacciarelli [99] recently
proposed a method based on an iterated greedy approach, which iteratively builds
a partial solution starting from a feasible solution and reconstructs a solution in a
greedy fashion.

The BJSS has received less attention than the BJS. Klinkert [62] studies the
scheduling of pallet moves in automated high-density warehouses, proposes a gen-
eralized disjunctive graph framework similar to the alternative graphs and devises a
local search heuristic with a feasible neighborhood for the BJSS. Gröflin and Klink-
ert [42] study a general insertion problem with, among others, an application to job
insertion in the BJSS. They also present in [43] a tabu search for the BJSS.

Job shop scheduling problems with limited buffer capacity (extending in a sense the
BJS where buffer capacity is zero) are studied by Brucker et al. [15] and Heitmann
[49]. Various ways in which buffers occur are analyzed and tabu search approaches
for flow shop and job shop problems are proposed for specific buffer configurations,
including the BJS.

5.3. A Problem Formulation

The FBJSS is a version of the FJSS without buffers and with transfer times. The
additional features can be described as follows.

The assumption that there are no buffers between machines has the following con-
sequence. A job, after having finished an operation on some machine m, might have

CHAPTER 5. THE FLEXIBLE BLOCKING JOB SHOP 81

to wait on m, thus blocking m, until the machine for its next operation becomes
available.

Specifically, consider operation j = Jr of a job J and assume that j is processed
on m ∈ Mj , its job predecessor operation i = Jr−1 is executed on p ∈ Mi and its
job successor k = Jr+1 is processed on q ∈Mk. Operation j consists of the following
four successive steps: (i) a take-over step of duration dt(i, p; j,m) where, after the
completion of operation i, the job is taken over from machine p to machine m; (ii)
a processing step on machine m of duration dp(i,m), (iii) a possible waiting time of
the job on machine m of unknown duration; and (iv) a hand-over step of duration
dt(j,m; k, q) where job J is handed over from machine m to machine q for its next
operation k.

The transfer times as well as the setup times can have value 0, allowing also for the
case where so-called swapping is permitted. Swapping occurs when two or more jobs
swap their machines.

Note that setups between two consecutive operations on a machine may occur
between the end of an operation’s hand-over step and the start of the next operation’s
take-over step.

The FBJSS problem can be stated as follows. A schedule consists of an assignment
of a machine and a starting time of the hand-over, processing and take-over step for
each operation so that the constraints described in the FJSS and given above are
satisfied. The objective is to find a schedule with minimal makespan.

5.4. The FBJSS as an Instance of the CJS Model

The formulation of the FBJSS served as a basis for the development of the CJS
model. Therefore, a FBJSS instance can be specified in a straightforward manner
as an instance in the CJS model, the only remarks given here concern time lags and
initial and final setup times.

Clearly, the maximum time lags dlg(i,m) are set to ∞ (not present). An initial
and a final setup time are given for each operation in the FBJSS while they can be
specified for each transfer step in the CJS. We simply set ds(σ; oi,m) and ds(σ; oi,m)
to ds(σ; i,m), and similarly, ds(oi,m; τ) and ds(oi,m; τ) are set to ds(i,m; τ) for each
operation i ∈ I and m ∈Mi.

Note that the Example introduced in Section 2.4.4 is a FBJSS instance formulated
in the CJS model.

Clearly, the FBJSS belongs to the class of CJS problems without time lags, hence
the JIBLS can be applied.

5.5. Computational Results

In this section, we present computational results obtained by the JIBLS and compare
them to the state of the art, which is to our best knowledge Oddi et al. and Pranzo

82 5.5. COMPUTATIONAL RESULTS

and Pacciarelli in the BJS, and our results published in [45] in the FBJSS. The
obtained results turn out to be substantially better than the state of the art.

The JIBLS (with neighborhood N) was implemented single-threaded in Java for
the FBJSS. It was run on a PC with 3.1 GHz Intel Core i5-2400 processor and 4 GB
memory.

We conducted extensive computational experiments on a set of FBJSS instances
that were introduced in [45]. These instances were generated as follows. We started
with the 40 instances la01 to la40 of Lawrence [64]. For each lapq, two groups of 3
instances were generated, the first group without transfer and setup times (referred
to as Flexible Blocking Job Shop (FBJS) instances), the second group with transfer
and setup times (referred to as FBJSS instances). Within a group, the 3 instances
are generated by introducing increasing flexibility: in the first instance, 1 machine
is available for each operation (i.e. the non-flexible instance), while in the 2nd and
3rd, 2 and 3 machines, respectively, are available for each operation. This is achieved
by adding randomly and successively one machine, creating for each operation three
machine sets of size 1, 2 and 3 that are nested. Such a choice will allow to evaluate the
impact of increasing flexibility. Transfer and setup times were generated randomly as
described in [43].

The computational settings were similar to those described in the FJSS (Chapter
4). The initial solution was a permutation schedule obtained by randomly choosing a
job permutation and a mode. For each instance, five independent runs with different
initial solutions were performed. The computation time of a run was limited to 1800
seconds and the tabu search parameters were set as maxt = 10, maxl = 300 and
maxIter = 6000.

We compared the obtained results with the best current benchmarks to our knowl-
edge, namely the results of Oddi et al. [87], Pranzo and Pacciarelli [99] (for non-flexible
FBJS instances), and the results published in [45].

Table 5.1 displays detailed results for the non-flexible FBJS instances. We tried to
use similar computation times as in the benchmarks. Therefore, we divided the table
into three blocks. The first block (columns 2-3) displays the average results after 600
seconds (avg-600) and the benchmarks of Pranzo and Pacciarelli with configuration
IG.RW. The seconds block (columns 4-6) reports the average results after 1800 seconds
(avg-1800), the average benchmarks reported in [45] (GPB), the benchmarks of Oddi
et al. obtained by their IFS method with the slack-based selection procedure and
parameter γ = 0.5 (OR1) and by their method CP-OPT (OR2). In the third block
(columns 7-9), the best results after 1800 seconds over the five runs (best-1800) are
compared to the best benchmarks of Oddi et al. (OR3) over 32 runs of their IFS
method and the best values of Pranzo and Pacciarelli over 12 runs of their iterated
greedy approach. In every block, the best values are highlighted in boldface. The
instances are grouped according to size, e.g. the first group 10×5 consists of instances
with 10 jobs and 5 machines. The following observations can be made.

Results avg-600 are competitive with PP1. Indeed, avg-600 gives lower, equal and
higher values than PP1 in 33, 5 and 2 instances, respectively. Moreover, the relative
deviation of avg-600 to PP1 (i.e. (avg-600− PP1)/PP1) is −4, 2% averaged over all

CHAPTER 5. THE FLEXIBLE BLOCKING JOB SHOP 83

avg-600 PP1 avg-1800 GPB OR1 OR2 best-1800 OR3 PP2

10× 5
la01 793.0 793 793.0 820 793 793 793 793 793
la02 793.0 793 793.0 817 793 815 793 793 793
la03 715.0 715 715.0 740 740 790 715 715 715
la04 743.0 743 743.0 764 776 784 743 743 743
la05 664.0 664 664.0 666 664 664 664 664 664
15× 5
la06 1083.8 1102 1077.8 1180 1112 1131 1076 1064 1102
la07 1042.4 1062 1033.4 1084 1081 1106 1016 1038 1020
la08 1058.6 1089 1053.8 1162 1135 1129 1040 1062 1071
la09 1154.4 1192 1148.2 1258 1257 1267 1141 1185 1162
la10 1117.2 1140 1116.0 1208 1158 1168 1096 1110 1134
20× 5
la11 1460.0 1550 1460.0 1591 1501 1520 1442 1466 1498
la12 1255.2 1342 1255.2 1398 1321 1308 1240 1272 1271
la13 1402.2 1531 1399.8 1541 1471 1528 1373 1465 1482
la14 1483.8 1538 1479.0 1638 1567 1506 1465 1548 1513
la15 1506.8 1593 1493.8 1630 1547 1571 1465 1527 1517
10× 10
la16 1064.0 1060 1060.0 1143 1086 1150 1060 1084 1060
la17 929.0 930 929.0 977 1000 996 929 930 929
la18 1029.4 1040 1025.4 1098 1120 1135 1025 1026 1025
la19 1051.0 1043 1045.0 1102 1077 1108 1043 1043 1043
la20 1062.8 1080 1062.8 1162 1166 1119 1060 1074 1060
15× 10
la21 1436.0 1514 1436.0 1576 1521 1579 1422 1521 1490
la22 1319.0 1368 1311.2 1467 1490 1379 1292 1425 1339
la23 1439.6 1445 1428.6 1570 1538 1497 1393 1531 1445
la24 1394.8 1434 1384.8 1546 1498 1523 1372 1498 1434
la25 1361.6 1422 1345.2 1523 1424 1561 1311 1424 1392
20× 10
la26 1887.2 2013 1854.8 2125 2179 2035 1795 2045 1989
la27 1939.8 2044 1923.8 2201 2172 2155 1892 2104 2017
la28 1911.0 2039 1871.4 2167 2132 2062 1836 2027 2039
la29 1780.8 1928 1754.2 1990 1963 1898 1733 1963 1846
la30 1898.2 2137 1895.4 2097 2125 2147 1868 2095 2049
30× 10
la31 2686.6 3095 2673.0 3137 3771 2921 2628 3078 3018
la32 2978.0 3415 2945.8 3316 3852 3237 2911 3336 3338
la33 2668.2 2970 2652.6 3061 3741 2844 2640 3147 2909
la34 2717.4 3016 2713.0 3146 3796 2848 2686 3125 3016
la35 2763.4 3193 2722.8 3171 3818 2923 2673 3148 3133
15× 15
la36 1706.0 1755 1699.4 1919 1891 1952 1643 1793 1755
la37 1853.8 1870 1812.2 2029 1983 1952 1774 1983 1870
la38 1625.6 1728 1624.4 1828 1708 1880 1616 1708 1720
la39 1699.6 1731 1682.0 1882 1848 1813 1651 1783 1731
la40 1693.4 1743 1662.4 1925 1831 1928 1629 1777 1743

Table 5.1.: The results avg-600, avg-1800 and best-1800 compared to the benchmarks PP1,
PP2, GPB, OR1, OR2, OR3 in the FBJS instances with flex= 1 (bold: best).

84 5.5. COMPUTATIONAL RESULTS

instances, and −11.9% averaged over instances of size 30×10, showing that avg-600 is
particularly at an advantage in large instances. Results avg-1800 dominate GPB, OR1
and OR2. Indeed, in all 40 instances avg-1800 provides the best values. Moreover,
the relative deviation of avg-1800 to the benchmarks is on average −9.1%,−9.1%
and −7.2 for GPB, OR1 and OR2, respectively. These deviations are lower in small
instances, e.g. −2.5%,−1.5% and −3.5% in 10 × 5 instances, and higher in large
instances, e.g. −13.4%,−27.8% and −7.2% in 30 × 10 instances for GPB, OR1 and
OR2, respectively. Also, results best-1800 are on average 6.0% and 4.6% better than
OR3 and PP2, respectively, and best-1800 gives lower, equal and higher values than
the best of OR3 and PP2 in 29, 10 and 1 instances, respectively.

These numbers suggest two findings. First, the methods of Pranzo and Pacciarelli,
and Oddi et al. provide a reasonable solution quality for small instances, but are far
away from the obtained results in all other instances. Second, the obtained results
are much better than the benchmarks GPB, especially in large instances.

We now consider all other instances, i.e. the flexible FBJS instances and the FBJSS
instances. Table 5.2 provides the detailed results for these instances as follows. The
first line splits the results into the two groups FBJS and FBJSS. The second line refers
to the degree of flexibility (flex= 1, 2 or 3), i.e. the number of alternative machines
per operation, and the third line to the type of results (average (avg) or best result
over the 5 runs per instance). The instances are grouped according to size. Note that
results FBJS with flex= 1 are not present as they are listed in Table 5.1.

We now discuss the results of Table 5.2 by comparing them with the benchmarks
GPB published in [45] (taking the results with neighborhood N 1

c). The comparison
of the obtained results with GPB is done in the following way. For each instance, we
computed the relative deviation (avg−GPB)/GPB of the average results avg to the
average benchmarks GPB. Table 5.3 shows these deviations in an aggregated way,
reporting average deviations over runs and instances of the same size. The table is
split into two blocks. The FBJS instances are treated in the first block (columns 2-4),
and the FBJSS are presented in the second block (columns 5-7). Each block consists
of three columns, one for each degree of flexibility (flex= 1, 2, 3). In the first column
the size of the instances are given. Note that the last line indicates average deviations
over all instance sizes, and the deviations in the non-flexible FBJS instances are also
provided in column 2. The following observations can be made.

Results avg are substantially better than GPB, particularly in large non-flexible
instances. E.g. they are on average 13.4% and 7.8% lower in 30 × 10 instances of
FBJS and FBJSS, respectively. But also in instances with flexibility, better results
are found, e.g. with flex= 2 results avg are on average 9.6% and 3.7% lower than
GPB in 30× 10 instances of FBJS and FBJSS, respectively.

Although the results GPB are obtained by a similar approach as used here, namely
a tabu search with a job insertion based neighborhood, several improvements have
been implemented since then, two of them worth being mentioned. First, we consider
the tail and head operation of critical arcs to build neighbors (see Section 3.4.3),
while the publication [45] considers just head operations of critical arcs. Second,
we substantially improved the time efficiency of the tabu search. Particularly, the
efficiency of the closure computation and makespan calculation were refined. As a

CHAPTER 5. THE FLEXIBLE BLOCKING JOB SHOP 85

group FBJS FBJSS

flex 2 3 1 2 3

avg best avg best avg best avg best avg best

10× 5
la01 642.6 641 609.0 607 1441.0 1441 1005.0 1005 849.2 849
la02 595.4 590 574.0 574 1515.0 1515 942.0 942 796.8 794
la03 541.0 541 507.8 506 1425.0 1423 925.6 923 737.6 733
la04 562.6 561 522.8 522 1391.8 1387 900.4 898 743.2 739
la05 549.0 549 549.0 549 1324.8 1304 842.0 842 733.2 731
15× 5
la06 900.4 895 841.2 837 2036.8 2024 1370.8 1346 1145.2 1129
la07 834.6 830 790.4 787 1999.8 1986 1339.2 1312 1075.0 1057
la08 858.4 851 804.2 795 2040.6 2017 1382.0 1352 1109.4 1092
la09 968.2 958 901.0 897 2124.0 2116 1521.2 1497 1171.0 1149
la10 914.4 895 851.8 844 2147.6 2130 1495.6 1477 1155.8 1144
20× 5
la11 1214.8 1204 1135.4 1122 2765.2 2740 1941.2 1888 1537.0 1509
la12 1058.2 1038 989.4 985 2577.8 2566 1771.2 1755 1406.8 1366
la13 1170.0 1152 1094.4 1089 2600.0 2570 1877.6 1849 1480.2 1450
la14 1210.8 1192 1131.8 1128 2699.4 2636 1917.0 1905 1524.2 1504
la15 1215.2 1197 1151.4 1132 2690.0 2656 1905.0 1855 1561.2 1548
10× 10
la16 769.8 763 717.0 717 1865.0 1865 1268.4 1247 1119.6 1102
la17 657.2 655 646.0 646 1718.0 1718 1202.8 1192 1034.2 1027
la18 734.2 725 664.2 663 1831.0 1831 1253.8 1249 1132.8 1114
la19 737.6 723 665.8 655 1765.0 1765 1274.8 1261 1148.8 1115
la20 779.2 775 756.0 756 1901.0 1901 1328.6 1297 1175.8 1139
15× 10
la21 1111.6 1085 1026.0 1018 2665.8 2640 1833.8 1796 1572.6 1555
la22 1005.2 989 945.8 930 2445.4 2420 1728.2 1698 1471.0 1449
la23 1125.2 1108 1056.4 1050 2574.4 2511 1830.0 1769 1535.4 1509
la24 1065.0 1059 989.8 978 2551.0 2532 1819.0 1781 1535.4 1507
la25 1036.6 1027 949.0 937 2511.4 2482 1760.6 1734 1483.0 1461
20× 10
la26 1417.4 1397 1278.2 1269 3391.6 3330 2385.4 2344 1994.4 1966
la27 1464.4 1446 1327.0 1316 3536.0 3484 2512.2 2450 2110.2 2057
la28 1447.0 1413 1325.8 1305 3465.0 3429 2439.0 2385 2057.4 2026
la29 1348.0 1320 1203.8 1175 3456.8 3416 2355.4 2281 2002.8 1972
la30 1416.4 1402 1296.6 1278 3449.8 3362 2472.6 2436 2076.8 2068
30× 10
la31 2064.0 2049 1886.0 1859 5120.6 4928 3540.0 3497 2942.6 2917
la32 2276.6 2231 2054.0 2023 5362.2 5330 3766.4 3750 3196.4 3152
la33 2061.2 2030 1852.4 1826 5096.0 4964 3606.6 3500 2971.8 2944
la34 2091.4 2077 1912.2 1885 5109.8 4959 3593.6 3515 3008.4 2968
la35 2111.0 2086 1929.8 1896 5235.0 5104 3603.4 3499 3011.8 2954
15× 15
la36 1212.4 1197 1077.0 1063 3028.8 2954 2056.2 2013 1849.6 1836
la37 1331.8 1311 1164.0 1139 3143.4 3051 2146.4 2116 1905.8 1887
la38 1148.0 1119 1020.4 1008 2965.0 2912 1998.8 1958 1773.6 1745
la39 1203.6 1151 1052.2 1032 2975.4 2919 2020.6 1985 1781.2 1752
la40 1227.8 1192 1056.4 1040 2999.6 2941 2048.0 2009 1789.0 1778

Table 5.2.: Detailed numerical results for various degrees of flexibility in the FBJS and
FBJSS instances.

86 5.5. COMPUTATIONAL RESULTS

group FBJS FBJSS

flex 1 2 3 1 2 3

10 × 5 -2.5% -3.1% -1.2% -0.9% -1.2% -1.6%
15 × 5 -7.8% -3.5% -2.3% -3.6% -2.6% -3.3%
20 × 5 -9.1% -4.4% -2.2% -4.1% -3.0% -2.9%
10 × 10 -6.5% -6.8% -2.2% -3.2% -2.6% -3.6%
15 × 10 -10.1% -4.2% -3.5% -5.6% -2.9% -2.8%
20 × 10 -12.1% -7.2% -8.0% -6.1% -2.0% -3.4%
30 × 10 -13.4% -9.6% -9.3% -7.8% -3.7% -4.9%
15 × 15 -11.5% -9.8% -13.6% -6.2% -2.6% -2.5%

All -9.1% -6.1% -5.3% -4.7% -2.6% -3.1%

Table 5.3.: Relative deviations of the results avg to the benchmarks GPB in the FBJS and
FBJSS instances.

group FBJS FBJSS

flex 1 2 3 1 2 3

10× 5 1’687’000 4’616’000 3’892’000 1’319’000 4’791’000 3’764’000
15× 5 3’040’000 2’621’000 2’184’000 2’447’000 3’115’000 2’443’000
20× 5 2’403’000 1’704’000 1’404’000 2’960’000 2’100’000 1’651’000
10× 10 3’000’000 1’318’000 780’000 3’480’000 2’643’000 1’455’000
15× 10 1’539’000 922’000 699’000 2’108’000 1’318’000 783’000
20× 10 877’000 398’000 218’000 1’375’000 849’000 522’000
30× 10 482’000 197’000 122’000 799’000 435’000 251’000
15× 15 913’000 214’000 105’000 1’444’000 992’000 567’000

Table 5.4.: Number of tabu search iterations per run (rounded to nearest 1000) in the FBJS
and FBJSS instances.

result, far more iterations can be done in the same time. In the non-flexible FBJS
instances of size 30 × 10, for example, about 4500 iterations are performed in [45]
while about 482’000 iterations are now executed (on a similar PC with the same time
limit). The reader may also check the number of iterations in FBJSS instances with
flex = 2 by considering column 6 of Table 5.4 and column 2 of Table 3 in [45]. The
number of iterations increased here by a factor of 7 to 20.

Another indicator for the quality of the tabu search is its improvement performance,
i.e. the evolution of attained solution quality over computation time. To evaluate
this feature, we recorded the best makespan ω at the beginning (initial solution) and
during the execution of the search for each instance and run, and computed its relative
deviation from the final solution (ω−ωfinal)/ωfinal. Figure 5.1 depicts these deviations
for FBJS instances with flexibility 2 averaged over instances of the same size, e.g. the
red line indicates the deviations for the 10 × 5 instances. Deviations from time 0
to 10 seconds are omitted for clarity. However, the deviations at the start (t = 0)
are indicated in brackets in the legend of the chart. Furthermore, Table 5.4 depicts
the number of tabu search iterations averaged over instances of the same size. The
following observations can be made.

CHAPTER 5. THE FLEXIBLE BLOCKING JOB SHOP 87

t

rel. deviation

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

11%

12%

13%

14%

200 400 600 800 1000 1200 1400 1600 1800

instance size

15× 15 (666%)

30× 10 (465%)

20× 10 (476%)

15× 10 (477%)

10× 10 (472%)

20× 5 (240%)

15× 5 (242%)

10× 5 (247%)

in (): deviation at t=0

Figure 5.1.: Relative deviations of the makespan from the final makespan during runtime
in FBJS instances with flexibility 2.

88 5.5. COMPUTATIONAL RESULTS

group FBJS FBJSS

flex 1 to 2 2 to 3 1 to 2 2 to 3

10× 5 -21.0% -4.9% -34.6% -16.5%
15× 5 -16.6% -5.4% -30.4% -19.8%
20× 5 -15.6% -5.7% -28.4% -19.2%
10× 10 -26.5% -5.3% -29.8% -10.9%
15× 10 -22.1% -5.6% -28.8% -14.3%
20× 10 -22.2% -6.2% -29.5% -13.6%
30× 10 -21.7% -5.5% -29.2% -14.5%
15× 15 -26.3% -6.8% -31.5% -11.7%

All -21.5% -5.7% -30.3% -15.1%

Table 5.5.: Relative changes in the makespan when adding one machine per operation in
the FBJS and FBJSS instances.

Initial solutions are far away from the obtained final solutions, with makespans three
to seven times as large. Also, most of the improvements are found within minutes.
Consider for example the 10× 10 instances. While the deviation is initially 472%, it
drops to 7.3% and 2.6% after 10 and 120 seconds, respectively. It is also notable that
the solution quality is (roughly) at the same level as the current state of the art after
about one minute of computation time. Similar results have been achieved in the
other instances, suggesting good improvement performance and convergence of the
tabu search. This can be partly attributed to the rather high number of tabu search
iterations; they are in the range of 100’000 and 5’000’000. Note that in the smallest
non-flexible instances, the tabu search stopped before reaching the time limit.

It is also of interest to examine the extent to which increasing flexibility decreases
makespan. Information of this type may be of interest at the design stage, when the
value of more flexible machines or additional machines is asserted. For each instance,
the average makespan ωk (over the five runs) with k ∈ {1, 2, 3} denoting the degree
of flexibility flex is compared to the average makespan ωk−1 of the corresponding
instance with one alternative machine less for each operation. Table 5.5 depicts
these changes in an aggregated way (over instances of the same size). The following
observations can be made.

First, flexibility offers more potential for makespan reduction when transfer and
setup times are present. For example in instances of size 20× 5, when increasing the
degree of flexibility from 1 to 2 the makespan is reduced by 15.6% in the absence
of transfer and setup times (group FBJS with flex 1 to 2) and by 30.4.% otherwise
(group FBJSS with flex 1 to 2). This can be attributed to the opportunity for
two consecutive operations in a job to be performed on the same machine if their
machine sets intersect, in which case transfer and setup times are saved. This effect
is quite visible when schedules are displayed in Gantt charts (see Figure 5.3). Second,
going from 1 to 2 machines per operation reduces the makespan significantly, the
average decrease being 21.5% and 30.3% in the group FBJS and FBJSS, respectively.
When adding a third machine, these numbers go down to 5.7% and 15.1%. While
these figures are only estimates, they give an interesting indication on the benefit of
flexibility and also of the diminishing return of adding flexibility.

CHAPTER 5. THE FLEXIBLE BLOCKING JOB SHOP 89

We conclude the discussion of the computational results with two Gantt charts.
Figure 5.2 depicts a schedule of FBJS instance la17 without flexibility, and Figure
5.3 presents a schedule of FBJSS instance la03 with flexibility 2. The thick bars
represent the take-over, processing and hand-over steps of the operations while the
narrow bars represent waiting times (filled) and setup times (hatched). The numbers
refer to the operations, e.g. 5.1 refers to the first operation of job 5.

5.6. From No-Buffers to Limited Buffer Capacity

There are job shops in practice that do not comprise any buffers at all. However, in
many cases a limited number of buffers is available. Hence, extending the blocking
job shop to the job shop with limited buffer capacity appears valuable. This research
direction is taken by several groups, among them Brucker et al. [15, 17] who con-
sider various buffer configurations (general buffers, job-dependent buffers, pairwise
buffers, machine output buffer, machine input buffers) and propose several solution
representation schemes.

Buffer capacities can be captured (to some extent) in the FBJSS by modeling each
buffer capacity unit as a machine. We assigned Marc Wiedmer in his Bachelor thesis
[114] the task of developing a modeling tool allowing to specify complex job shop
problems with buffers in a simple manner. The developed tool not only allows to
specify various buffer configurations, among them input buffers, output buffers and
buffers that are placed between pairs of machines (called intermediate or pairwise
buffers), but also displays the disjunctive graph of the problems and generates input
files which can be used further, e.g. with the JIBLS. A screenshot of the tool is given
in Figure 5.4

We conclude this chapter by an experiment with a BJS instance and the ad hoc
introduction of output buffers. Such experiments can be helpful at the design stage
of a production system to assess the value of additional buffers.

The following two settings were analyzed in the experiment. Starting with the BJS
instance la17 (without transfer times and setup times), we attached one output buffer
to each machine, and introduced after each operation on some machine m, a storage
operation of duration 0 executed on the buffer that is attached to m. Based on the so
obtained instance with one output buffer per machine, we created an instance with
two parallel output buffers per machine by attaching a second output buffer to each
machine and giving the choice to execute any storage operation on one of the two
corresponding buffers.

Solutions of the two created instances are displayed in Figures 5.5 and 5.6. A line
is added for each buffer above its corresponding machine indicated by the letter b.
The storage operations with a positive duration are illustrated by narrow bars in the
color of the corresponding job.

We compare the two illustrated solutions to the solution of the instance we started
with displayed in Figure 5.2. While the makespan is 923 in the instance without
buffers, it goes down to 803 with one buffer per machine and to 784 with two buffers
per machine, which is a respective decrease of 13% and 15%, showing that a sub-

90 5.6. FROM NO-BUFFERS TO LIMITED BUFFER CAPACITY

100 200 300 400 500 600 700 800 900

t
m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

4.1 8
.4

5.2

6.4 10.2 7
.8 9.5 3.8 2.10 1.10

8
.1 7.1 3.4 2.3 10.1 4.9 5.10 9.9

6.8

1
.9

3.1 8
.3 6.2 4
.6 9.1 5.6 2.5 1.4 7.9 10.8

6.1 4.3 3.3 8.7 7.4 9.2 5.8 2.6 1.5 10.4

3.2 5
.3

1
.1 4.7 7.5 8.10 9
.3 6.6 2.9

10.10

4
.5 6.3 2
.2

8.9 7.6

5.7 10.3 1.7 9.10 3.10

8.6 5.5 4.8 7.7 3.6 2.7 9.6 1.86.9 10.9

8.2 4.4 7.2 1
.2 2.4 6.5

5.9

3.7 9
.7

1
0
.6

4.2

8
.5 2.1

5.4

7
.3

3
.5 1.6 9
.8 6.7

1
0
.7

5.1 8
.8 1.3

9.4

4
.1

0

2.8

7
.1

0

1
0
.5 3.9

6
.1

0

Figure 5.2.: A schedule with makespan 923 of FBJS instance la17 without flexibility.

100 200 300 400 500 600 700 800 900

t
m1

m2

m3

m4

m5

2
.3 2.4 3.4 3.5 7
.2 7.3 1
.1 1.2 1.3

10.5

2
.2 2.5 6.3 6.4

6.5

8
.1 8.2 4.3 4.4 4.5

2
.1 6.1 6.2 9.4 9.5 5
.5 4.2 10.1 1.5

3.2 3
.3

9.2

9.3 7.1 5.4 4.1 8.3 10.2

1
0
.3

3.1 9.1 5.1 5.2 5.3 7
.4 7.5 8.4

8.5

1.4
10.4

Figure 5.3.: A schedule with makespan 927 of FBJSS instance la03 with flexibility 2.

CHAPTER 5. THE FLEXIBLE BLOCKING JOB SHOP 91

Figure 5.4.: A screenshot of Marc Wiedmer’s complex job shop modeling tool.

92 5.6. FROM NO-BUFFERS TO LIMITED BUFFER CAPACITY

100 200 300 400 500 600 700 800 900

t
m1

b

m2

b

m3

b

m4

b

m5

b

m6

b

m7

b

m8

b

m9

b

m10

b

4.1
5.2

6.4
8.4

10.2 9.5 7
.8 3.8 1.10 2.10

7.1 8
.1 2.3 3.4 10.1 1
.9

6.8

9.9 4.9 5.10

3
.1 1.4 6.2 8
.3 9.1 2.5 5.6 4
.6 7.9 10.8

6.1 4.3 3.3 1.5 7.4 9.2 2.6 8.7 10.4 5.8

1
.1 3.2 5
.3 7.5 9
.3 6.6 4
.7 2.9 8.10

10.10

2
.2 6.3 4
.5 1.7

7.6

10.3 5.7
8.9

9.10 3.10

5.5 3.6 8.6 1
.8 7.7 2.7 9.6 4.8 6.9 10.9

1
.2 7.2 8.2 4.4 2.4 6.5 3.7

9.7

1
0
.6

5.9

2.1
4.2 5.4

7
.3

3.5

1.6 8
.5 6.7 9
.8

1
0
.7

1.3 5.1
9.4

8
.8 2.8

1
0
.5 3.9

7
.1

0

4
.1

0

6
.1

0

Figure 5.5.: A schedule with makespan 803 of instance la17 with one output buffer per
machine.

stantial amount of time can be saved in this instance by installing buffer capacities.

A remark on the quality of the two solutions is in order. It is known that an optimal
solution of instance la17 in the JS has makespan 784 (see e.g. Pezzella and Merelli
[91]). Clearly, makespan 784 is then a lower bound for the optimal makespan in the
versions with a limited number of buffers. Hence, the solution with two buffers and
makespan 784 (Figure 5.6) is optimal.

CHAPTER 5. THE FLEXIBLE BLOCKING JOB SHOP 93

100 200 300 400 500 600 700 800 900

t
m1

b
b

m2

b
b

m3

b
b

m4

b
b

m5

b
b

m6

b
b

m7

b
b

m8

b
b

m9

b
b

m10

b
b

4.1
5.2 8.4

6.4 10.2 9.5 7
.8 3.8 2.10 1.10

8
.1 7.1 10.1 2.3 3.4

6.8

9.9 1
.9 4.9 5.10

3
.1 6.2 8
.3 9.1 1.4 2.5 4
.6 5.6 7.9 10.8

6.1 4.3 3.3 7.4 9.2 1.5 2.6 10.4 8.7 5.8

1
.1 3.2 5
.3 7.5 9
.3 6.6 4
.7 2.9 8.10

10.10

2
.2 6.3 4
.5

7.6

10.3 1.7 5.7 9.10
8.9

3.10

5.5 8.6 3.6 7.7 2.7 9.6 1
.8 4.8 6.9 10.9

1
.2 8.2 7.2 4.4 2.4 6.5 3.7

9.7

1
0
.6

5.9

2.1
4.2 5.4

7
.3

8
.5

3.5

1.6 6.7 9
.8

1
0
.7

5.1 1.3
9.4

2.8

1
0
.5 3.9 8
.8

6
.1

0

7
.1

0

4
.1

0

Figure 5.6.: A schedule with makespan 784 of instance la17 with two parallel output buffers
per machine.

CHAPTER 6

TRANSPORTATION IN COMPLEX JOB SHOPS

6.1. Introduction

In modern manufacturing systems, (semi-) automated mobile devices transport the
jobs from one machine to the next. The mobile devices carry various names, they
are called, for example, automated guided vehicles (AGVs) in flexible manufacturing
systems (FMS), robots in robotic cells, cranes in container terminals and hoists in
electroplating plants.

In such systems, it is important to schedule not only the machining operations
but also the transport operations. Moreover, the scheduling problem should not be
partitioned into a machine scheduling problem and a transportation problem as these
two problems are often strongly linked with each other. For example Smith et al.
[105] mention on this issue: “Due to the difficulties involved in job-shop schedul-
ing, researchers have tended to simplify the scope of the problems in order to make
them more tractable. The most common of these assumptions involves disregarding
material handling activities under the premise that they are negligible and can be
“added-on” to complete the schedule. However, the procedure for “adding-on” the
material handling activities does not appear to be well-known.” In their review on
cyclic scheduling in robotic flow shops, Crama et al. [27] stress the following: “Clas-
sical scheduling models however, as they have been developed until the late seventies,
appear to be unsuitable to incorporate the most important characteristics of flexible
manufacturing cells, such as the interaction between the material handling system
and the machines.”

Thus, it appears valuable to integrate transportation also in the job shop models,
as is done in this and the next chapter. The problems we consider can informally
be described as follows. Given are jobs, ordinary machines and robots. As usual, a
machine and a robot can handle at most one job at any time. A job is processed on
machines in a sequence of machining operations and is transported from one machine

96 6.2. A LITERATURE REVIEW

to the next by a robot in transport operations. Thus a job can be seen as a sequence
of alternating machining and transport operations. Moreover, there is some rout-
ing flexibility: while a machining operation is executed on a preassigned machine, a
transport operation can be executed by any robot. Sequence-dependent setup times
between transport operations will be a necessary feature, and we allow such setup
times also between machining operations.

We consider three different versions of the problem with increasing difficulty. In
the first version, we assume that the robots do not interfere with each other in their
movements and an unlimited number of buffers is available, and call this version the
JS-T. In the second version, we change the assumption concerning the buffers and
state that there are no buffers available, and call this version the BJS-T. And finally,
we consider a version of the BJS-T where the robots interfere with each other in their
movements. This version is called the BJS-RT and is discussed in the next chapter.

It is well-known that the robots can be treated as “normal” machines with sequence-
dependent setup times. Then, the JS-T can be seen as a special FJSS and similarly,
the BJS-T can be seen as a special FBJSS, allowing us to apply the JIBLS also to
the JS-T and the BJS-T. Although not tailored to these problems, we show in this
chapter that the JIBLS is competitive when compared to the state of the art.

The chapter is structured as follows. The following section gives a selective litera-
ture review on job shop scheduling problems with transportation. The JS-T and the
BJS-T are then discussed in Sections 6.3 and 6.4.

6.2. A Literature Review

Job shop scheduling problems that include transportation have been studied by several
authors. Hurink and Knust [53] consider a single transportation robot in a JS. Bilge
and Ulusoy [10], Brucker and Strotmann [18], Khayat et al. [56], Deroussi et al.
[31] and Lacomme et al. [63] tackle a similar problem with multiple identical robots
(with no spatial interferences between them). Only few papers address versions of
the blocking job shop with transportation. Poppenborg et al. [97] consider a BJS
with transportation and total weighted tardiness objective. They propose a MIP
formulation and a tabu search. Brucker et al. [14] recently studied the cyclic BJS
with one transportation robot.

To our knowledge, no paper (except our contribution [21]) considers a job shop
setting (JS or BJS) with multiple robots interfering with each other, although the
value of incorporating interferences between robots and limited buffer capacity has
been recognized by several authors. For instance Khayat et al. [56] suggested future
research to “include testing conflict avoidance and limited buffer capacities in a job
shop setting”.

Numerous papers deal with application-specific problems occurring in the context
of hoist scheduling, robotic cell scheduling, scheduling of cranes in container terminals
and factory crane scheduling. We briefly discuss a selection of representative articles.

In electroplating facilities, panels are covered with a coat of metal by immersing
them sequentially in tanks, and hoists move the panels from tank to tank. Scheduling

CHAPTER 6. TRANSPORTATION IN COMPLEX JOB SHOPS 97

the coating operations as well as the movements of the hoists is commonly addressed
as the hoist scheduling problem, cf. Manier and Bloch [73]. Many papers address
versions with a single hoist, for example by Phillips and Unger [94], Shapiro and
Nuttle [104] and Che and Chu [25]. Versions with multiple hoists are studied for
example by Manier et al. [74] and Leung et al. [67, 68]. In these applications, empty
hoists can move out of the way in order to avoid collisions, whereas loaded hoists have
to move directly from tank to tank.

A typical robotic cell consists of an input device, a set of machines, an output
device and one or multiple robots that transport the parts within the cell. Usually,
there are no buffers available and the jobs have to visit the machines in the same
order, i.e. in a flow shop manner, cf. Crama and Kats [27] and Dawande et al. [30].
Robotic cell scheduling problems with one robot have been considered for example by
Sethi et al. [103], Crama and van de Klundert [28], Hertz et al. [50] and Hall et al.
[48]. Versions with multiple robots have received less attention. Geismar et al. [35],
Galante and Passannanti [33], Geismar et al. [36] consider multiple robots. Typically,
collisions are avoided by assigning the robots non-overlapping working areas or, if the
working areas overlap, restricting the access to an area to at most one robot at any
time. Simple policies are established to control the access.

Crane scheduling in container terminals addresses the problem of scheduling trans-
port operations (storage, retrieval and relocation) of containers executed by yard
cranes. In many papers, systems with a single crane have been tackled, for example
by Kim and Kim [58], Narasimhan and Palekar [81], Ng and Mak [83]. Multiple cranes
have been considered e.g. by Ng [82] who partitions the yard into non-overlapping
areas, one for each crane, to eliminate the occurrence of collisions, and by Li et al. [69]
who use a time-discretized MIP formulation to enforce a minimum distance between
cranes at any time period.

Factories frequently comprise track-mounted overhead cranes for moving parts be-
tween different locations. Typically, the lifting component of a crane, called hoist, is
mounted on a crossbar on which it moves laterally and the crossbar itself moves lon-
gitudinally along a track, which may be shared by multiple cranes, cf. Peterson et al.
[90]. Factory crane scheduling consists in scheduling the transportation of the parts
in order to meet a given manufacturing schedule. Factory crane scheduling problems
are addressed, for example, by Liebermann and Turksen [70], Tang et al. [109], Aron
et al. [5] and Peterson et al. [90].

Several authors emphasize that the presence of multiple robots that interfere with
each other increases complexity, e.g. Leung et al. [68] write: “the scheduling problem
for multi-hoist lines is significantly more difficult than for single-hoist lines because
of the additional problem of hoist collision avoidance.”

98 6.3. THE JOB SHOP WITH TRANSPORTATION (JS-T)

0 1 2 3 4

m1 m2 m3

r1
r2

x

Figure 6.1.: A layout in the JS-T example.

6.3. The Job Shop with Transportation (JS-T)

6.3.1. A Problem Formulation

The Job Shop with Transportation (JS-T) can be seen as a FJSS instance with trans-
portation, characterized by an unlimited number of buffers and no interferences be-
tween the robots. The transportation features can be described as follows.

The set of machines M = M ′ ∪ R is partitioned into a set of ordinary machines
M ′ and a set of robots R. Similarly the set of operations I = IM ∪ IR is partitioned
into set IM of machining operations and set IR of transport operations. As usual, all
machines m ∈M can handle at most one job at any time.

There is some routing flexibility: While each machining operation i ∈ IM is exe-
cuted on a preassigned machine mi ∈ M ′, each transport operation i ∈ IR can be
executed by any robot r ∈ R.

The operations of a job J ∈ J are alternately machining and transport operations,
and we assume that |J | is odd, Jq ∈ IM for q odd and Jq ∈ IR for q even, 1 ≤ q ≤ |J |.
Note that typically the first operation J1 will consist in loading job J at some storage
place or device, and the last operation J|J| will represent the unloading of completed
job J .

The robots might not be identical, e.g. they may move at different (maximum)
speeds. Indeed, the duration dp(i, r) of a transport operation i depends on the as-
signed robot r ∈ R and might be different for various r ∈ R. Moreover, also the
setup times ds(i, r; j, r) occurring between two transport operations on a same robot
r depend on r ∈ R.

A schedule consists of an assignment of a robot for each transport operation and
a starting time for each (machining and transport) operation so that all constraints
described in the FJSS and given above are satisfied. The objective is to find a schedule
with minimal makespan.

An illustration of the JS-T is given in an example, which is based on the job shop ex-
ample introduced in Figure 1.2 (Section 1.3), assuming that the machines are located
on a line, machine m1,m2 and m3 being at location 1, 2 and 3, respectively, measured
on the x-axis, and there are two robots r1 and r2 available for the transportation of
the jobs between the machines. Figure 6.1 depicts this layout. The robots have a
maximum speed of 1, e.g. a move between machines m1 and m3 needs two time units.
The location of r1 and r2 at the beginning and at the end is the same, namely 0 and
1 for r1 and r2, respectively.

CHAPTER 6. TRANSPORTATION IN COMPLEX JOB SHOPS 99

4 8 12 16

t
m1

m2

m3

r1

r2

1.1 3.3 2.5

2.1 1.3 3.5

3.1 2.3 1.5

1
.2 2.4 1
.4

2
.2 3.2 3.4

Figure 6.2.: A solution of the JS-T example.

In Figure 6.2 a solution of the example is depicted in a Gantt chart. The num-
bering of the operations is changed compared to Figure 1.2 due the added transport
operations. Note that the dashed lines stand for idles moves, i.e. for the setups, of
the robots.

6.3.2. Computational Results

We examine if the JIBLS also finds good solutions in the JS-T instances. For this
purpose, we use the standard JS-T instances of Hurink and Knust [53] (HK) and
compare the obtained results to best benchmarks of these instances. As the number
of robots is one in all the instances of Hurink and Knust, we also created for each
HK instance two instances with multiple robots by introducing a second and third
identical robot.

Note that we also considered the instances of Bilge and Ulusoy [10] (BU), which
are often used in the literature. The benchmark set BU contains 40 instances with 5
to 8 jobs, 3 to 4 machines and 2 robots. Numerical experiments have shown that the
instances are quite simple to solve. In fact, using a MIP with the solver Gurobi 5.5
[46], near-optimal or optimal solutions are found in these instances within seconds.
Very similar results are obtained by the JIBLS and by the state of the art methods
of Deroussi et al. [31] and Lacomme et al. [63]. Hence, a comparison of the different
methods is somewhat superfluous.

The computational settings were similar to those described in the FJSS (Chapter
4). The JIBLS was run on a PC with 3.1 GHz Intel Core i5-2400 processor and 4
GB memory. The initial solution was a permutation schedule obtained by randomly
choosing a job permutation and a mode. For each instance, five independent runs with
different initial solutions were performed. The computation time of a run was limited
to 600 seconds and the tabu search parameters were set as maxt = 10, maxl = 300
and maxIter = 6000.

We experimented with the two neighborhood versions N 1 and N 2 (see Section
4.6.3). Neighborhood N 1 was slightly better than N 2 in the HK instances.

100 6.3. THE JOB SHOP WITH TRANSPORTATION

instance 1 robot 2 robots 3 robots

best avg best avg best avg

6× 6
P01.dat.D1 d1 87 87.0 63 63.0 62 62.0
P01.dat.D1 t1 81 81.0 62 62.0 62 62.0
P01.dat.D2 d1 151 152.8 84 84.2 73 73.0
P01.dat.D3 d1 217 218.4 113 113.8 88 88.0
P01.dat.T2 t1 74 74.6 62 62.0 61 61.0
P01.dat.T3 t0 92 92.0 65 65.0 65 65.0
P01.dat.tikl.1 137 138.2 78 78.4 74 74.0
P01.dat.tikl.2 132 133.0 77 77.0 75 75.0
P01.dat.tikl.3 148 148.0 80 80.0 72 72.0
P01.dat.tkl.1 139 140.0 77 77.4 71 71.0

10× 10
P02.dat.D1 d1 984 1000.2 954 976.6 955 959.6
P02.dat.D1 t0 988 1006.2 954 967.8 955 966.0
P02.dat.D1 t1 966 988.0 954 975.0 961 971.8
P02.dat.D2 d1 1014 1041.6 973 999.4 971 981.2
P02.dat.D3 d1 1047 1069.4 988 1005.2 988 1005.2
P02.dat.D5 t2 1323 1331.0 1019 1039.2 1020 1029.2
P02.dat.T1 t1 950 990.6 934 961.8 934 948.4
P02.dat.T2 t1 973 999.8 941 961.6 941 956.8
P02.dat.T5 t2 1006 1034.8 970 988.6 970 980.8
P02.dat.mult0.5 D1 d1 544 561.0 522 530.6 519 530.4
P02.dat.mult0.5 D1 t1 537 548.8 522 533.0 522 525.2
P02.dat.mult0.5 D2 d1 636 644.8 542 556.8 538 541.2
P02.dat.mult0.5 D2 t0 561 579.6 541 548.8 538 544.2
P02.dat.mult0.5 D2 t1 584 605.2 542 555.0 538 546.0
P02.dat.tikl.1 973 1018.8 966 987.4 957 960.6
P02.dat.tikl.2 983 1011.4 957 976.2 962 968.2
P02.dat.tikl.3 990 1012.8 960 972.8 954 969.8
P02.dat.tikl.4 972 1009.0 965 986.4 964 965.6
P02.dat.tkl.1 985 1021.6 956 978.8 956 974.2
P02.dat.tkl.2 991 1030.0 958 976.2 958 970.2

Table 6.1.: Detailed numerical results in the JS-T instances.

Table 6.1 displays the obtained results with N 1 as follows. The table is divided into
three blocks. Block 1 (columns 2-3), 2 (columns 4-5) and 3 (columns 5-6) displays
the best and average (avg) results over the five runs of the instances with 1, 2 and 3
robots, respectively. In the first column the name of the HK instance is given. The
instances are grouped according to size, e.g. the first group 6×6 consists of instances
with 6 jobs and 6 machines.

The results of the instances with one robot are compared in Table 6.2 with the best
current benchmarks to our knowledge, namely the benchmarks of Hurink and Knust
[53] and Lacomme et al. [63]. Column 1 gives the name of the instance and column
2 presents the best results over the five runs. Benchmarks HK1, HK2 and HK3,
listed in columns 3-5, are the best results of Hurink and Knust obtained in 6 runs of
their “short one-stage” approach (HK1), 12 runs of their “short combined approach”
(HK2), and 12 runs of their “long combined” approach (HK3). Benchmarks LA1,
listed in column 6, are the best values obtained by Lacomme et al. in 5 runs. The

CHAPTER 6. TRANSPORTATION IN COMPLEX JOB SHOPS 101

instance best HK1 HK2 HK3 LA1

6× 6
P01.dat.D1 d1 87 87 88 - 87
P01.dat.D1 t1 81 81 83 - 81
P01.dat.D2 d1 151 148 153 - 148
P01.dat.D3 d1 217 217 216 - 213
P01.dat.T2 t1 74 74 74 - 74
P01.dat.T3 t0 92 92 93 - 92
P01.dat.tikl.1 137 134 137 - -
P01.dat.tikl.2 132 129 134 - -
P01.dat.tikl.3 148 144 144 - -
P01.dat.tkl.1 139 137 141 - 136

10× 10
P02.dat.D1 d1 984 1044 1013 990 1012
P02.dat.D1 t0 988 1042 989 989 1017
P02.dat.D1 t1 966 1016 995 989 983
P02.dat.D2 d1 1014 1070 1004 993 1045
P02.dat.D3 d1 1047 1070 1078 1072 1100
P02.dat.D5 t2 1323 1325 1383 1371 1361
P02.dat.T1 t1 950 1006 1022 1018 978
P02.dat.T2 t1 973 1015 1053 1030 993
P02.dat.T5 t2 1006 1102 1090 1020 1022
P02.dat.mult0.5 D1 d1 544 555 562 558 581
P02.dat.mult0.5 D1 t1 537 544 551 542 546
P02.dat.mult0.5 D2 d1 636 633 674 666 673
P02.dat.mult0.5 D2 t0 561 578 595 595 584
P02.dat.mult0.5 D2 t1 584 613 621 620 620
P02.dat.tikl.1 973 1082 1089 1027 1009
P02.dat.tikl.2 983 1035 1087 1033 1002
P02.dat.tikl.3 990 1039 1081 989 -
P02.dat.tikl.4 972 1045 1084 997 -
P02.dat.tkl.1 985 1086 1061 1018 -
P02.dat.tkl.2 991 1028 1058 1014 -

Table 6.2.: The results best compared to benchmarks (HK1, HK2, HK3, LA1) in the JS-T
instances with one robot (bold: best).

runtime limit in best, HK1, HK2 and LA1 are the same, namely 600 seconds while
HK3 uses up to 3600 seconds per run. The following can be observed.

The results best are on average 2.7%, 3.9%, 2.9% and 2.0% better than benchmarks
HK1, HK2, HK3 and LA1, respectively. Moreover, best gives the lowest values in 21
instances (out of 30) while HK1, HK2, HK3 and LA1 present in 9, 2, 2 and 7 instances,
respectively, the lowest values (see numbers in bold). Altogether, the JIBLS appears
also competitive in the JS-T when compared to the best current benchmarks.

Since the HK instances with multiple robots have not been addressed in the lit-
erature, a comparison of the obtained results with benchmarks is not possible. For
this reason, we tried to assess the quality of the solutions with results obtained via a
MIP model that we derived in a straightforward manner from the disjunctive graph
formulation. The model was implemented in the mathematical modeling language
LPL [54], and all instances (including the instances with one robot) were solved us-
ing the solver Gurobi 5.5 [46] with a time limit of 3600 seconds. Table 6.3 shows

102 6.3. THE JOB SHOP WITH TRANSPORTATION

instance 1 robot 2 robots 3 robots

6× 6
P01.dat.D1 d1 87 63 62
P01.dat.D1 t1 80 62 62
P01.dat.D2 d1 (104;151) (76;84) 73
P01.dat.D3 d1 (135;213) (93;115) (84;88)
P01.dat.T2 t1 74 62 61
P01.dat.T3 t0 92 65 65
P01.dat.tikl.1 (79;138) (74;79) 74
P01.dat.tikl.2 132 (75;77) 75
P01.dat.tikl.3 (89;146) (70;81) 72
P01.dat.tkl.1 (86;142) (71;78) 71

10× 10
P02.dat.D1 d1 957 (771;964) (831;955)
P02.dat.D1 t0 954 (795;961) (861;954)
P02.dat.D1 t1 (861;956) 954 954
P02.dat.D2 d1 (850;998) 972 (818;973)
P02.dat.D3 d1 (873;1076) 988 988
P02.dat.D5 t2 (847;1369) (1014;1019) 1019
P02.dat.T1 t1 934 (765;953) (772;960)
P02.dat.T2 t1 (867;942) 941 (775;952)
P02.dat.T5 t2 974 970 (787;980)

P02.dat.mult0.5 D1 d1 (424;544) 518 518
P02.dat.mult0.5 D1 t1 (474;522) (439;522) (446;526)
P02.dat.mult0.5 D2 d1 (444;678) 539 (477;538)
P02.dat.mult0.5 D2 t0 (476;573) 538 538
P02.dat.mult0.5 D2 t1 (442;617) (471;546) 538

P02.dat.tikl.1 957 (846;964) (830;957)
P02.dat.tikl.2 959 (815;962) 957
P02.dat.tikl.3 954 954 954
P02.dat.tikl.4 961 959 (786;971)
P02.dat.tkl.1 965 956 956
P02.dat.tkl.2 963 958 958

Table 6.3.: MIP results in the JS-T instances with one to three robots.

detailed results by providing the optimal values or upper and lower bounds (ub;lb) if
optimality could not be established. The following can be observed.

Optimality is established in about half of the instances. In fact, in 14, 16, and 19
instances with 1,2 and 3 robots, respectively, optimal solutions are found. In all other
instances, a feasible solution is found, which is not the case for instances of the same
size in more complex job shop problems with transportation (cf. the BJS-T in Table
6.5 and the BJS-RT in Table 7.2).

Now comparing the MIP results with the tabu search results best of Table 6.1. In
the instances where the MIP established optimality, the average relative deviations
(best−MIP)/MIP are 1.8%, 0.2% and 0.1% for instances with 1, 2 and 3 robots, and
in the other instances they are -0.7%, -0.7% and -0.6%, respectively. These numbers
suggest that the tabu search finds good results within a short time.

It is also of interest to examine the impact on the makespan when increasing the
number of robots. This information may be of value when the gain of using more

CHAPTER 6. TRANSPORTATION IN COMPLEX JOB SHOPS 103

100 200 300 400 500 600 700 800 900

t
m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

r

2.1 9.1 7.3 8.3 4.5 1
.1 3.3

5.3 10.3

6.13

7.1 4.1 9.3 3.1 8.5
6.3

10.1

2
.1

1

1.3 5
.5

8
.1

5
.1 2.3 4.3 7
.7 6.1 9.9 10.5

1.5

3.7

7.5 9.5 2.9 6.7 3.5 1.7 5
.9 4.15 10.15 8.19

2.5 4.7 8
.9 1.9 5.11

9
.1

7

7.19
6.17

10.17

3
.1

9

7
.1

1
9.7 6.5 8.7 2.15 5.7

1.11 3.11

10.13 4.19

7
.9

4.9

2.13 9.13
10.7

8.11 1.13 6.15 3.15 5.19

7
.1

7

4.13 9.15 2.17
3.13

5.15 1.15 8.17

6
.1

9

10.19

7.15 4.11 6.9 10.9 3.9

5
.1

3

8
.1

3

9.19 1.17

2
.1

9

2.7

7
.1

3

9.11

6.11 10.11

4
.1

7

8.15 5.17 3.17

1
.1

9

Figure 6.3.: A schedule of the JS-T instance P02.dat.tikl.1 with one robot having makespan
973.

robots needs to be asserted. For each instance, the average makespan ωk (over the five
runs of the tabu search) with k ∈ {1, 2, 3} denoting the number of robots is compared
to the average makespan ωk−1 of the corresponding instance with one robot less. The
following observations can be made. When adding a second robot, the makespan
goes down on average by 15.8%. In some instances the decrease is quite low, e.g.
1.3% in instance P02.dat.D1 t1, while in other instances the decrease is quite large,
e.g. 47.9% in instance P01.dat.D3 d1. Adding a third robot offers less potential.
Indeed, the makespan goes down by another 2.9% on average. Nevertheless, in some
instances the additional decrease is substantial, e.g. 22.7% in P01.dat.D3 d1 and
10.0% in P01.dat.tikl.3.

We conclude this section with Figure 6.3 depicting in a Gantt chart a schedule of
instance P02.dat.tikl.1 with one robot having makespan 973. For clarity, the numbers
referring to the transport operations are omitted (see the bars on the line of the robot
r).

104 6.4. THE BLOCKING JOB SHOP WITH TRANSPORTATION (BJS-T)

4 8 12 16 20 24 28

t
m1

m2

m3

r1

r2

1.1 3.3 2.5

2.1 1.3 3.5

3.1 2.3 1.5

1
.2 3.2 1.4

2
.2

3
.4 2.4

Figure 6.4.: A solution of the BJS-T example.

6.4. The Blocking Job Shop with Transportation
(BJS-T)

In practical applications of the job shop with transportation such as in robotic cells, in
electroplating plants and in container terminals, the number of buffers is often limited
or there are no buffers at all. In this section, we consider such a problem, namely the
JS-T without buffers, called the Blocking Job Shop with Transportation (BJS-T).

6.4.1. A Problem Formulation

The Blocking Job Shop with Transportation (BJS-T) can be seen as a FBJSS instance
with transportation, characterized by the absence of buffers and no interferences be-
tween the robots. The transportation features are those introduced for the JS-T in
Section 6.3. The Blocking Job Shop with Transportation (BJS-T) can also be seen
as a JS-T instance without buffers and with transfer times.

An illustration is given in the example of Section 6.3, assuming that no buffers
are present and each transfer (take-over and hand-over) has duration 1. Figure 6.4
depicts a solution of this example.

6.4.2. Computational Results

We investigate the performance of the JIBLS in the BJS-T. Since the problem does
not appear in the literature, we created a test set of 120 instances, starting from the
JS-T instances of Hurink and Knust (HK) with one, two and three robots and setting
all transfer times (including loading and unloading times) to 1. The computational
settings were the same as in the FBJSS (Chapter 5).

Detailed results are provided in Table 6.4. The table is divided into three blocks.
Block 1 (columns 2-3), 2 (columns 4-5) and 3 (columns 5-6) displays the best and
average (avg) results over the five runs of the instances with 1, 2 and 3 robots,
respectively. In the first column the name of the (basic) HK instance is given. The
instances are grouped according to size. We now discuss the results, evaluating the

CHAPTER 6. TRANSPORTATION IN COMPLEX JOB SHOPS 105

instance 1 robot 2 robots 3 robots

best avg best avg best avg

6× 6
P01.dat.D1 d1 191 191.0 115 115.0 89 89.8
P01.dat.D1 t1 161 161.0 100 100.0 85 85.0
P01.dat.D2 d1 255 255.0 141 141.0 105 105.2
P01.dat.D3 d1 321 321.0 172 172.6 125 126.0
P01.dat.T2 t1 156 156.0 98 98.8 84 84.0
P01.dat.T3 t0 157 157.0 98 98.0 86 86.0
P01.dat.tikl.1 222 222.0 123 123.4 96 96.4
P01.dat.tikl.2 214 214.0 123 123.4 98 98.0
P01.dat.tikl.3 229 229.0 130 130.8 99 99.0
P01.dat.tkl.1 240 240.0 133 133.0 101 101.0

10× 10
P02.dat.D1 d1 1396 1417.2 1087 1107.4 1024 1042.2
P02.dat.D1 t0 1295 1307.4 1058 1098.4 1005 1014.0
P02.dat.D1 t1 1307 1313.2 1103 1111.0 1012 1020.0
P02.dat.D2 d1 1450 1504.6 1138 1167.2 1054 1062.4
P02.dat.D3 d1 1681 1720.0 1188 1214.4 1078 1082.6
P02.dat.D5 t2 1889 2029.4 1279 1318.8 1120 1160.0
P02.dat.T1 t1 1259 1272.0 1077 1089.8 998 1003.8
P02.dat.T2 t1 1289 1315.6 1086 1101.2 1005 1016.6
P02.dat.T5 t2 1447 1479.0 1123 1147.6 1041 1046.2
P02.dat.mult0.5 D1 d1 935 940.6 653 694.4 593 620.8
P02.dat.mult0.5 D1 t1 819 833.0 634 649.2 577 601.6
P02.dat.mult0.5 D2 d1 1141 1190.2 717 771.6 622 651.2
P02.dat.mult0.5 D2 t0 927 940.0 677 691.2 608 615.4
P02.dat.mult0.5 D2 t1 994 1011.8 678 701.2 603 624.6
P02.dat.tikl.1 1368 1397.6 1108 1131.2 1023 1031.8
P02.dat.tikl.2 1344 1393.0 1112 1129.6 1015 1037.6
P02.dat.tikl.3 1340 1363.4 1116 1118.2 1023 1031.2
P02.dat.tikl.4 1370 1386.6 1127 1135.8 1018 1040.4
P02.dat.tkl.1 1387 1419.2 1112 1131.0 1019 1035.2
P02.dat.tkl.2 1393 1438.4 1125 1140.2 1030 1052.8

Table 6.4.: Detailed numerical results in the BJS-T instances.

solution quality, the impact of the absence of buffers and the impact of the number
of robots.

Since no benchmarks are available in the literature, we tried to assess the quality of
the solutions with results obtained via a MIP model that we derived in a straightfor-
ward manner from the disjunctive graph formulation. The model was implemented in
LPL [54], and the instances were solved using the solver Gurobi 5.5 [46] with a time
limit of 3600 seconds. Table 6.5 shows the results by providing the optimal values or
upper and lower bounds (ub;lb). The following observations can be made.

First, all instances with 10 machines and 10 jobs remained unsolved as the solver
could not find a feasible solution. For this reason, only results for the 6× 6 instances
appear in the table. Second, even in these instances, an optimal solution could not
always be found. Instances with multiple robots seem to be of a particular difficulty.
Third, comparing the results of Table 6.4 with those achieved by the MIP solver, in

106 6.4. THE BLOCKING JOB SHOP WITH TRANSPORTATION

instance 1 robot 2 robots 3 robots

P01.dat.D1 d1 191 (83;117) (79;90)
P01.dat.D1 t1 161 (76;100) (83;85)
P01.dat.D2 d1 255 (99;145) (89;108)
P01.dat.D3 d1 (274;321) (126;174) (100;129)
P01.dat.T2 t1 156 (88;99) 84
P01.dat.T3 t0 157 (93;98) (85;86)
P01.dat.tikl.1 222 (94;129) (88;96)
P01.dat.tikl.2 214 (94;127) (89;98)
P01.dat.tikl.3 229 (93;134) (89;99)
P01.dat.tkl.1 240 (91;135) (87;103)

Table 6.5.: MIP results for the BJS-T instances of size 6× 6.

all instances the best of the five tabu search runs reached the MIP optimum or upper
bound, and the results of all five runs are as good or very close to the MIP results.
Although limited, these results suggest that the JIBLS performs well in the BJS-T.

Furthermore, we investigate the impact of the absence of buffers. For this purpose,
we compare for each instance the average makespan with the average makespan of
the corresponding instance in the JS-T (with unlimited buffers). The following obser-
vations can be made. On average, the makespan is 76.0%, 62.6% and 38.0% higher
in the BJS-T instances of size 6× 6 with 1, 2 and 3 robots, respectively, and 46.2%,
19.3% and 9.4% higher in the instances of size 10× 10 with 1, 2 and 3 robots, respec-
tively. These numbers suggest that buffers have a significant impact on the makespan
and the robots act as buffers. This effect can also be seen in the examples depicted
in Figures 6.4 and 6.5.

It is also of interest to examine the impact on the makespan when increasing the
number of robots. For this purpose, we compare the average makespan ωk of each
instance with k ∈ {1, 2, 3} robots to the average makespan ωk−1 of the corresponding
instance with one robot less. The following observations can be made. Additional
robots reduce the makespan significantly. Indeed, when adding a second and third
robot, the makespan goes down by 40.7% and 20.7% on average in instances of size
6× 6 and by 22.4% and 9.1% in instances of size 10× 10.

This section is concluded by showing a schedule of instance P02.dat.mult0.5 D2 t1
with two robot in Figure 6.5. For clarity, the numbers referring to the transport
operations are omitted.

CHAPTER 6. TRANSPORTATION IN COMPLEX JOB SHOPS 107

100 200 300 400 500 600 700

t
m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

r1

r2

2
.1

5.3

1
.1

7
.3 9.1 4.5

10.3

8.3 3.3

6
.1

3

7
.1

5
.5 1.3 4.1 9.3

2
.1

1

10.1
6.3

3.1 8
.5

5.1

2.3
1.5 7.7

4.3 6.1 8
.1 10.5 9.9 3.7

7.5 1
.7

5
.9 2.9 9.5 6.7 3
.5 4.15

1
0
.1

5

8.19

2.5 1.9 5.11 4.7 7.19 8
.9

9
.1

7

10.17
6.17

3.19

5.7
1.11

7
.1

1

2
.1

5

6.5 9.7 8.7

1
0
.1

3

3.11

4.19

7
.9 1.13

2
.1

3

4.9 10.7

5.19

9
.1

3

8.11 3.15 6.15

1.15 5.15 2.17

7
.1

7

4.13 9.15
3.13

8
.1

7

10.19

6
.1

9

5
.1

3

1
.1

7

7.15 2.19 4.11 10.9 6.9 3.9

8
.1

3

9.19

2.7

7
.1

3

1
.1

9

5.17
9.11

10.11 6.11

4
.1

7

8
.1

5

3
.1

7

Figure 6.5.: A schedule of the BJS-T instance P02.dat.mult0.5 D2 t1 with two robot and
makespan 678.

CHAPTER 7

THE BLOCKING JOB SHOP WITH
RAIL-BOUND TRANSPORTATION

7.1. Introduction

In practice, not only the number of buffers is limited but often the transportation
devices interfere with each other. Typically, interferences arise when these devices
move in a common transportation network. For example, hoists in electroplating
plans, robots in robotic cells and cranes in container terminals occasionally move
on a single rail line. As mentioned in the literature review in Section 6.2, these
interferences substantially increase the complexity of the scheduling problem due to
the additional problem of preventing robot collisions.

In this chapter, we consider a version of the BJS-T where the robots move on a single
rail line, and call this problem the Blocking Job Shop with Rail-Bound Transportation
(BJS-RT). The material of this chapter is to a main part taken from the publication
[21].

The transportation system considered here consists of multiple robots moving on a
common rail line along which the machines are located. The robots cannot pass each
other and must maintain a minimum distance from each other, but can move ”out
of the way”. Also, a robot can move at a speed up to a limit which can be robot
dependent.

The objective is to determine the starting time of each transport and machining
operation, the assigned robot of each transport operation, and the trajectory, i.e. the
location at any time, of each robot, in order to minimize the makespan.

An illustration of the BJS-RT is given in an example, which is based on the BJS-T
example described in Section 6.4.1. Now assume that the robots move on a single
rail line along which the machines are located and the minimum distance between the
robots is 1 (see Figure 7.1).

110 7.2. NOTATION AND DATA

0 1 2 3 4

m1 m2 m3

r1 r2

x

rail

Figure 7.1.: The rail layout in the example.

4 8 12 16 20 24 28

t

x

1

2

3

4

r1

r2

1.1

1.3

1.5

2.1

2.3

2.5

3.1

3.3

3.5

r1

r2

1
.2 3.2 3
.4

2
.2 2.4 1
.4

Figure 7.2.: A solution of the BJS-RT example.

Figure 7.2 depicts a solution of this problem in a Gantt chart like time-location
diagram. The horizontal and vertical axes stand for the time and the location on
the rail. The location of the machining operation bars represents the location of
the corresponding machine. The transport operations are depicted above the x-axis
as their location is not fixed. Feasible trajectories of the robots are displayed by
two black lines. Thick line sections indicate that a robot is loaded with a job while
thin sections stand for idle moves. The black dots on the lines indicate the start or
completion of a transfer step.

7.2. Notation and Data

We slightly extend the notation of the BJS-T to capture transports on a rail.

The locations of the machines and robots along and on the rail are measured on an
x-axis. For each machine m ∈ M ′, let am be its fixed location. Also, for each robot
r ∈ R, let x(r, t) denote the (variable) location of r at time t, and aσr and aτr be
prescribed initial and end location, i.e. x(r, 0) = aσr and x(r, ω) = aτr must hold at
makespan ω. Furthermore, for each robot r ∈ R, let vr > 0 be its maximum speed,
and δ > 0 be the minimum distance to be maintained between two consecutive robots
on the rail. Finally, L is the usable rail length: 0 ≤ x(r, t) ≤ L for all r ∈ R and all t.

CHAPTER 7. THE BJS-RT 111

For each operation i ∈ I, let aoi and aoi be the locations of its hand-over and take-
over steps. Note that these locations are determined by the machine locations: if
i ∈ IM , aoi = aoi = ami ; if i ∈ IR, i ∈ J and j, k ∈ J are the (machining) operations
preceding and following i, then aoi = aoj = amj and aoi = aok = amk .

For each transport operation i ∈ IR and each robot r ∈ R, let processing duration
dp(i, r) = |aoi − aoi |/vr be the minimum duration of its transport step on r, namely
the time needed by r to cover the transport distance at maximum speed.

For any two distinct operations i, j ∈ IR and r ∈ R, if both i and j are executed
on robot r and j immediately follows i on r, a ”setup” of duration ds(i, r; j, r) occurs
on robot r, corresponding to the minimum duration of the idle move of r from the
location of the hand-over step oi of i to the location of the take-over step oj of j, i.e.
ds(i, r; j, r) = |aoi − aoj |/vr.

Finally, for each i ∈ IR and r ∈ R, the initial and final setup times are defined as
ds(σ; oi,m) = |aσr−aoi |/vr, ds(σ; oi,m) = |aσr−aoi |/vr, and similarly, ds(oi,m; τ) =
|aoi−aτr|/vr, ds(oi,m; τ) = |aoi−aτr|/vr, the minimum time needed by r to cover the
distance from its initial location to the location of the take-over oi and hand-over oi,
respectively from the location of the take-over oi and hand-over oi to its end location.

A few standard assumptions concerning the data are made. Maximum robot speeds
are positive, and, since we allow a transport operation to be executed by any robot,
enough machine-free space on the rail left and right should be available: (|R| − 1)δ ≤
min{am : m ∈M} and max{am : m ∈M} ≤ L− (|R| − 1)δ must hold.

7.3. A First Problem Formulation

In this section, we formulate the BJS-RT by using our problem formulation of the
BJS-T in Section 6.4 and extending it to take into account the interferences between
robots.

7.3.1. The Flexible Blocking Job Shop Relaxation

We temporarily ignore the interferences between the robots on the rail. This relaxed
BJS-RT is then an instance of the BJS-T, which is discussed in Section 6.4.

Figure 7.3 depicts the disjunctive graph G of the example. For clarity however,
nodes σ and τ , as well as all disjunctive arcs, except two pairs denoted by e, e and e′, e′,
have been omitted. A pair of synchronization arcs is represented by an undirected
edge.

Now consider feasible selections in the disjunctive graph G of the relaxed BJS-RT.
A feasible selection (µ, S) specifies with µ the assignment of robots to the transport
operations and with S the sequencing of the operations on the machines and robots.
Note that each operation i ∈ IM is executed on a preassigned machine mi ∈ M ′,
hence in any mode µ ∈M, µ(i) = mi for all i ∈ IM .

112 7.3. A FIRST PROBLEM FORMULATION

m1

m2

m3

r1

r2
e

e

e′

e′

Figure 7.3.: Disjunctive graph of the example.

For any mode µ, let Fµ = {S ⊆ Eµ : (µ, S) is feasible}. Given µ ∈M and S ∈ Fµ,
any α = (αv : v ∈ V µ) satisfying:

αw − αv ≥ d(v, w) for all arcs (v, w) ∈ Aµ ∪ S (7.1)

ασ = 0 (7.2)

specifies starting times for the events corresponding to the nodes of V µ. ατ is the
makespan and for any operation i ∈ I and v = v1

i,µ(i), v
2
i,µ(i), v

3
i,µ(i), v

4
i,µ(i), αv is the

starting and completion time of its take-over step oi and the starting and completion
time of its hand-over step oi. Note that the lag between the starting time and the
completion time of all these transfer steps is exactly the transfer time. Let

Ω (µ, S) = {α ∈ RV
µ

: α satisfies (7.1)− (7.2)}
Ω (µ) = ∪S∈FµΩ (µ, S) .

Definition 21 The solution space of the relaxed BJS-RT is Ω = {(µ, α) :µ ∈M, α ∈
Ω (µ)}. Any (µ, α) ∈ Ω is called a schedule.

The relaxed BJS-RT is the problem of finding a schedule (µ, α) ∈ Ω minimizing ατ .
Note that, given µ ∈ M and S ∈ Fµ, finding a schedule α minimizing the makespan
is finding α ∈ Ω (µ, S) minimizing ατ . As is well-known, this is easily done by longest
path computation in (V µ, Aµ ∪ S, d) and letting αv be the length of a longest path
from σ to v for all v ∈ V µ (see also Section 2.3). The relaxed BJS-RT can therefore
also be formulated as: Among all feasible selections, find a selection (µ, S) minimizing
the length of a longest path from σ to τ in (V µ, Aµ ∪ S, d).

7.3.2. Schedules with Trajectories

Not every schedule (µ, α) ∈ Ω is feasible in the BJS-RT. Indeed, due to the interfer-
ence of the robots with each other, there might not exist feasible trajectories x(r, .),
r ∈ R, that ”meet” the schedule. Given (µ, α) ∈ Ω, we now examine which constraints
the trajectories must satisfy in order to be feasible.

CHAPTER 7. THE BJS-RT 113

First, since the robots r ∈ R cannot pass each other on the rail, it is convenient
to index them r1, r2, . . . , rK ,K = |R|, according to their natural ordering on the rail,
with their locations at any time t satisfying x(r1, t) < x(r2, t) < ... < x(rK , t). From
now on, for ease of notation, reference to robot rk will be made simply through its
index k, e.g. x(rk, t) is denoted by x(k, t) and the maximum speed vrk by vk.

Second, main input data for the trajectories are the locations, starting times and
durations of the transfer steps (take-over or hand-over steps) of all transport oper-
ations. For k = 1, . . . ,K, let Ok = {oi, oi : i ∈ IR with µ(i) = k} be the set of
transfer steps executed by robot k. The location of a transfer step o ∈ Ok is denoted
by ao, its starting time by α(o) and its duration by d(o). Note that these data are all
determined by the schedule (µ, α), e.g. if o = oi ∈ Ok for some i ∈ IR, then ao = aoi ,
α(o) = αv1ik and d(o) = dt(j,mj ; i, k), where i is in some job J and j is the machining
operation preceding i in J . It is convenient to add to Ok a fictive initial and final
transfer step σk and τk, both of duration 0, and respective locations the prescribed
initial and final locations aσk and aτk, and starting times 0 and ατ . Denote again by
Ok the so extended set and let O =

⋃
k Ok.

Feasible trajectories x(k, .), k = 1, . . . ,K, must satisfy the following constraints:

|x(k, t′)− x(k, t)| ≤ (t′ − t)vk for all k = 1, . . . ,K and t′ > t ≥ 0 (7.3)

x(k, t) = ao for all k = 1, ..,K, o ∈ Ok and t with α(o) ≤ t ≤ α(o) + d(o) (7.4)

x(k, t) + δ ≤ x(k + 1, t) for all k = 1, . . . ,K − 1 and t ≥ 0 (7.5)

0 ≤ x(1, t) and x(K, t) ≤ L for all t ≥ 0 (7.6)

(7.3) expresses that a robot cannot cover a greater distance than allowed by its max-
imum speed. (7.4) enforces that a robot is at ao while it executes the transfer step
o. (7.5) maintains a minimum distance δ between two adjacent robots, while (7.6)
restricts the moves of the robots to the interval [0, L].

Given a schedule (µ, α) ∈ Ω, let

X (µ, α) = {x = (x(k, .), k = 1, . . . ,K) : x satisfies (7.3) to (7.6)}

Definition 22 The solution space of the BJS-RT is Γ = {(µ, α,x) : (µ, α) ∈ Ω and
x ∈ X (µ, α)}. Any (µ, α,x) ∈ Γ is called a schedule with trajectories. The BJS-RT
is the problem of finding a schedule with trajectories minimizing ατ .

7.4. A Compact Problem Formulation

The objective in this section is to transform the BJS-RT into a “pure” scheduling
problem, i.e. we derive a formulation whose decision variables involve only starting
times and robot assignments and whose constraints ensure the existence of feasible
trajectories.

114 7.4. A COMPACT PROBLEM FORMULATION

Since the objective function in the BJS-RT depends only on α, a more compact
formulation is obtained in principle by projecting Γ onto the space of the schedules.
Letting

Γproj = {(µ, α) : ∃ (µ, α,x) ∈ Γ}
= {(µ, α) : (µ, α) ∈ Ω and X (µ, α) 6= ∅},

the BJS-RT is then the problem of finding a schedule (µ, α) ∈ Γproj minimizing ατ .

The usefulness of this formulation depends on how the condition X (µ, α) 6= ∅ can
be expressed more adequately and trajectories x = (x(k, .), k = 1, . . . ,K) ∈ X (µ, α)
can be determined efficiently.

7.4.1. The Feasible Trajectory Problem

Definition 23 Given a schedule (µ, α) ∈ Ω, the feasible trajectory problem (FTP) at
(µ, α) is the problem of determining trajectories x = (x(k, .), k = 1, . . . ,K) ∈ X (µ, α)
or establishing X (µ, α) = ∅.

We characterize when the FTP at (µ, α) has a feasible solution, i.e. X (µ, α) 6= ∅,
and define for this purpose the following discrete version of the FTP at (µ, α).

Consider the set Q = {α(o), α(o)+d(o) : o ∈ O} of distinct starting and completion
times of all transfer steps, and order Q such that Q = {t1, ..., tQ} with Q ≤ 2|O| and
t1 < ... < tQ. Also, for any 0 ≤ t ≤ t′, let P[t, t′] = {p : 1 ≤ p ≤ Q and t ≤ tp ≤ t′}.
For all k = 1, ...,K, p = 1, ..., Q, denote by xkp = x(k, tp) the location of the robot k
at tp and consider the system:

|xk,p+1 − xkp| ≤ (tp+1 − tp)vk for all k = 1, ...,K, p = 1, ..., Q− 1, (7.7)

xkp = ao for all k = 1, ...,K, o ∈ Ok and p ∈ P[α(o), α(o) + d(o)], (7.8)

xkp + δ ≤ xk+1,p for all k = 1, ...,K − 1, p = 1, ..., Q, (7.9)

0 ≤ x1p and xKp ≤ L for all p = 1, ..., Q. (7.10)

(7.7) to (7.10) give a discrete version of the FTP at (µ, α) as the following holds.

Proposition 24 i) For any (x̂(k, .): k = 1, ...,K) satisfying (7.3) to (7.6), x̂kp =
x̂(k, tp), k = 1, ...,K, p = 1, ..., Q satisfies (7.7) to (7.10).
ii) For any x̂kp, k = 1, ...,K, p = 1, ..., Q, satisfying (7.7) to (7.10),
x̂(k, .), k = 1, ...,K, defined by:

x̂(k, tp) = x̂kp, p = 1, ..., Q and (7.11)

x̂(k, t) =
tp+1 − t
tp+1 − tp

x̂kp +
t− tp

tp+1 − tp
x̂k,p+1, tp < t < tp+1, p = 1, ..., Q− 1 (7.12)

satisfies (7.3) to (7.6).

Proof. i) is obvious. ii) is easily proven by observing that with (7.11) and (7.12),
the trajectory x̂(k, .), k ∈ {1, ...,K}, is simply obtained by joining in the time-location
space each pair of consecutive points (tp, x̂kp), (tp+1, x̂k,p+1) by a line segment.

CHAPTER 7. THE BJS-RT 115

Now consider two transfer steps o and o′ that are executed by distinct cranes k and
k′ with o ∈ Ok and o′ ∈ Ok′ . Without loss of generality, we may assume that k < k′.
By constraints (7.9), crane k′ has to be at any time at least (k′ − k)δ above crane k.
By constraints (7.8), crane k has to be at location ao while executing transfer step o
and crane k′ has to be at ao′ while o′ is executed. Hence, if the transfer location ao′

is not at least (k′−k)δ above the location ao, i.e. if ao′ −ao < (k′−k)δ, then the two
steps o, o′ cannot occur simultaneously. Moreover, there must be a certain time lag
between the executions of the two steps. This time lag can be specified as follows.

Definition 25 For any two cranes k, k′ with 1 ≤ k < k′ ≤ K, and any two transfer
steps o ∈ Ok, o′ ∈ Ok′ , let

∆kk′

oo′ = [(k′ − k)δ + ao − ao′]/min{v
l

: k ≤ l ≤ k′}. (7.13)

Assume ∆kk′

oo′ > 0. Then ao′−ao < (k′−k)δ, so o and o′ cannot occur simultaneously.
Suppose o′ is completed at time t′ and o begins at time t > t′. In the interval [t′, t],
robot k′ needs to cover at least distance (k′ − k)δ + ao − ao′ , and so do all robots l
with k ≤ l ≤ k′. Similarly if t < t′, all robots l with k ≤ l ≤ k′ have to travel at least
distance (k′ − k)δ + ao − ao′ in the interval [t, t′], hence

α(o) + d(o) + ∆kk′

oo′ ≤ α(o′) or α(o′) + d(o′) + ∆kk′

oo′ ≤ α(o).

Following a terminology in use, we call such a disjunctive constraint a collision avoid-
ance constraint. Indeed, constraints of this type have been introduced e.g. by Manier
et al. [74], Leung and Zhang [67] and Leung et al. [68] in the hoist scheduling prob-
lem. They establish necessity and sufficiency of these constraints by a case-by-case
analysis of the various ways collisions between two hoists can occur. We show here
necessity and sufficiency in the following lemma by identifying the discrete FTP as a
network problem in a graph H and showing the equivalence of the collision avoidance
constraints with the absence of negative cycles in H.

Lemma 26 System (7.7) to (7.10) admits a solution if and only if for all o ∈ Ok,
o′ ∈ Ok′ with k < k′ and ∆kk′

oo′ > 0:

α(o) + d(o) + ∆kk′

oo′ ≤ α(o′) or α(o′) + d(o′) + ∆kk′

oo′ ≤ α(o) (7.14)

Proof. Let H = (W,B, c) be the following graph. Node set W consists of node
w∗ and K ×Q nodes wkp, k = 1, ...,K, p = 1, ..., Q. The arc set B and the valuation
c ∈ RB are given in the table below:

arcs of B weights c
(wk+1,p, wkp) −δ k = 1, ...,K − 1, p = 1, ..., Q,
(wkp, wk,p+1)

(tp+1 − tp)vk k = 1, ...,K, p = 1, ..., Q− 1,
(wk,p+1, wkp)
(w∗, wkp) ao for all k = 1, ...,K, o ∈ Ok
(wkp, w∗) −ao and p ∈ P[α(o), α(o) + d(o)],
(w1p, w∗)

0 0
p = 1, ..., Q.

(w∗, wKp)
L L

116 7.4. A COMPACT PROBLEM FORMULATION

∗ ao

−ao
k, p

k + 1, p

k, p+ 1

k + 1, p+ 1

−δ−δ

(tp+1 − tp)vk

Figure 7.4.: Graph H. (Not all arcs are shown.)

Note that parallel arcs are present, explaining the indexing 0 and L in (w1p, w∗)
0 and

(w∗, wKp)
L. Graph H is depicted in Figure 7.4.

It is easy to see that the system (7.7) to (7.10) is equivalent to the following system
of inequalities in graph H = (W,B, c):

xw − xv ≤ cvw for all (v, w) ∈ B, (7.15)

xw∗ = 0, (7.16)

i.e. x satisfying (7.15) and (7.16) is a feasible potential function. By a well-known
result of combinatorial optimization (see e.g. Cook et al. [26], p. 25), H = (W,B, c)
admits a feasible potential function - and hence (7.7) to (7.10) admits a feasible
solution - if and only if no cycle of negative length exists in H.

We prove therefore that constraints (7.14) hold if and only if H has no negative
cycle.

First, the following observations are useful. Consider the graph H− obtained from
H by deleting node w∗. H

− contains no cycle of negative length. Also, there exists a
path in H− from a node wk′p′ to a node wkp if and only if k ≤ k′. Finally, it is easy
to see that a shortest path in H− from wk′p′ to wkp has length |tp′ − tp| ·min{vl : k ≤
l ≤ k′} − (k′ − k)δ.

i) Now suppose that (7.14) does not hold: there are o ∈ Ok, o′ ∈ Ok′ , with k′ > k
and ∆kk′

oo′ > 0, such that ∆kk′

oo′ > α(o′)− α(o)− d(o) and ∆kk′

oo′ > α(o)− α(o′)− d(o′).
If o and o′ are both in execution at some time tp, p ∈ {1, . . . , Q}, then the cycle Z
in H consisting of arc (w∗, wk′p), a shortest path in H− from wk′p to wkp and arc
(wkp, w∗) has length

c(Z) = ao′ − (k′ − k)δ − ao = −∆kk′

oo′ ·min{vl : k ≤ l ≤ k′},

CHAPTER 7. THE BJS-RT 117

hence c(Z) < 0. If o is executed before o′, i.e. α(o) + d(o) ≤ α(o′), let p and p′ be
such that tp = α(o) + d(o) and tp′ = α(o′). Then the cycle Z in H consisting of arc
(w∗, wk′p′), a shortest path in H− from wk′p′ to wkp and arc (wkp, w∗) has length

c(Z) = ao′ + |tp′ − tp| ·min{vl : k ≤ l ≤ k′} − (k′ − k)δ − ao
= [α(o′)− α(o)− d(o)−∆kk′

oo′] ·min{vl : k ≤ l ≤ k′} < 0.

Finally, if o′ is executed before o, i.e. α(o′) + d(o′) ≤ α(o), the existence of a negative
cycle is shown similarly.

ii) Conversely, suppose H has a cycle Z of negative length. By the preceding
observations, Z must pass through node w∗, leaving w∗ by an arc b′ with head wk′p′

and entering w∗ by an arc b with tail wkp for some k ≤ k′ and p, p′. Also, we may
assume that Z takes a shortest path in H− from wk′p′ to wkp. Hence Z has length

c(Z) = cb′ + cb + |tp′ − tp| ·min{vl : k ≤ l ≤ k′} − (k′ − k)δ < 0.

First, we exclude the following three cases for b′ and b. Case a): b′ = (w∗, wKp′)
L

and b = (w1p, w∗)
0. We may assume p′ = p since (w1p, w∗)

0 ∈ B with same weight 0,
so that c(Z) = L + 0 − (K − 1)δ < 0, violating the standard assumption max{am :
m ∈ M} ≤ L− (K − 1)δ. Case b): b′ = (w∗, wKp′)

L and b = (wkp, w∗) with weight
−ao. We may assume p′ = p since (w∗, wKp′)

L ∈ B with same weight L, so that
c(Z) = L − ao − (K − k)δ < 0, in contradiction to max{am : m ∈ M} ≤ L−
(K − 1)δ. Case c) b′ = (w∗, wk′p′) with weight ao′ and b = (w1p, w∗)

0. We may
assume p = p′, so that c(Z) = ao′ − (k′ − 1)δ < 0, contradicting the assumption
(K − 1)δ ≤ min{am : m ∈M}.

Therefore arc b′ is (w∗, wk′p′) for some o′ ∈ Ok′ and α(o′) ≤ tp′ ≤ α(o′) + d(o′),
and arc b is (wkp, w∗) for some o ∈ Ok and α(o) ≤ tp ≤ α(o) + d(o). The case k = k′

can be excluded, using the fact that for any two o, o′ ∈ Ok, with say, α(o) ≤ α(o′),
α(o′)− (α(o) + d(o)) ≥ |ao′ − ao| holds. Therefore k < k′ and the length of Z is

c(Z) = ao′ − ao + |tp′ − tp| ·min{vl : k ≤ l ≤ k′} − (k′ − k)δ

= [|tp′ − tp| −∆kk′

oo′] ·min{vl : k ≤ l ≤ k′} < 0

Therefore |tp′ − tp| − ∆kk′

oo′ < 0, so that ∆kk′

oo′ > 0, and both ∆kk′

oo′ > tp′ − tp and

∆kk′

oo′ > tp− tp′ hold. Then ∆kk′

oo′ > tp′ − tp ≥ α(o′) − α(o) − d(o) and ∆kk′

oo′ > tp−
tp′ ≥ α(o)− α(o′)− d(o′), so that (7.14) is violated for this pair o, o′.

Assuming that the FTP at (µ, α) has a feasible solution, trajectories x = (x(k, .),
k = 1, . . . ,K) can be determined by finding a potential function in H - an elementary
task in network flows - and applying Proposition 24. Furthermore, a natural objective
is to find trajectories minimizing the total distance traveled by the robots. It is easy
to define a network problem in an adapted graph H that finds a potential optimizing
this objective and then apply Proposition 24. However, optimal trajectories can also
be determined more efficiently with an algorithm based on geometric arguments, as
will be shown in Section 7.7.

118 7.4. A COMPACT PROBLEM FORMULATION

7.4.2. Projection onto the Space of Schedules

A compact disjunctive graph formulation of the BJR-RT is now readily obtained by
introducing in G = (V,A,E, E , d) additional conjunctive and disjunctive arcs to take
into account constraints (7.14) for any mode.

First, observe that each transfer step of a transport operation on a given robot is
represented by a specific arc in G. Indeed, a transfer step o on robot k is either oi or
oi for some i ∈ IR executed by k; oi on k is represented in G by the arc (v1

ik, v
2
ik) and

oi on k by (v3
ik, v

4
ik).

Second, conflicts of a transfer step o of a transport operation executed by a robot
k with the fictive initial and final transfer steps σk′ and τk′ of the robots k′ 6= k,
simply result in an initial setup time and a final set up time for o on k. Also, a
conflict between two transfer steps o, o′ (of distinct transport operations) of a same
job simply results in a precedence constraint.

Conjunctive arcs are now added to A and disjunctive arcs are added to E, respec-
tively arc pairs to E , as specified in the three steps below, convening that arcs are
added only if their weight is positive:

1. For all o ∈ {oi, oi : i ∈ IR} and all k, 1 ≤ k ≤ K, if (v, w) represents o on k, add
to A the arc (σ, v) with weight ∆.k

σo = max{0; ∆kk′

oσk′
: k < k′; ∆k′k

σk′o
: k > k′},

and (w, τ) with weight ∆k.
oτ = max{0; ∆kk′

oτk′
: k < k′; ∆k′k

τk′o
: k > k′}. (If an

arc is added that is parallel to an arc already present, retain only the arc with
largest weight.)

2. For each o, o′ ∈ {oi, oi : i ∈ IR} where o and o′ are transfer steps of distinct
transport operations of a same job, assuming without loss of generality that o
precedes o′, for each k 6= k′, if (v, w) and (v′, w′) represent o on k and o′ on k′,
add to A the arc (w, v′) with weight ∆kk′

oo′ if k′ > k and ∆k′k
o′o if k′ < k.

3. For all o, o′ ∈ {oi, oi : i ∈ IR} where o and o′ are transfer steps of distinct jobs,
and all k, k′ with 1 ≤ k < k′ ≤ K, if (v, w) and (v′, w′) represent o on k and o′

on k′, add to E, respectively to E , the pair of arcs (w, v′), (w′, v), both of weight
∆kk′

oo′ .

Denote by G′ = (V,A′, E′, E ′, d′) the disjunctive graph thus obtained. Figure 7.5
depicts G′ in the example, obtained by adding in G of Figure 7.3 conjunctive and
disjunctive arcs as described above. For sake of clarity, only two additional arcs f
and g from step 1, arc h from step 2 and disjunctive arc pair e, ē from step 3 are
displayed. The weights of e, ē, f , g and h are 3, 3, 1, 2 and 1. In the example, G
contains altogether 30 disjunctive arcs pairs, and 24 arcs in step 1, 15 arcs in step 2
and 63 disjunctive arc pairs in step 3 are added to obtain G′.

Define in G′ modes, (complete, acyclic, feasible) selections, and F ′µ, Ω′ (µ, S′),Ω′(µ)
and Ω′ similarly to the corresponding definitions in G given in Sections 2.4 and 7.3.1.

Theorem 27 The projection Γproj of the set of schedules with trajectories (defined
in G) is precisely the set of schedules Ω′ defined in G′.

CHAPTER 7. THE BJS-RT 119

σ τ

f
g

h e

e

Figure 7.5.: Some collision avoidance arcs (e, ē, f , g and h) in the example.

Proof. i) The FTP at (µ, α) in G admits a feasible solution, i.e. X (µ, α) 6= ∅, if
and only the constraints (7.14) hold. Indeed, by Proposition 24 the FTP at (µ, α)
admits a feasible solution if and only if its discrete version (7.7) to (7.10) admits a
feasible solution, hence by Lemma 26, if and only if (7.14) holds. Therefore Γproj =
{(µ, α) : µ ∈M, α ∈ Ω (µ) and (7.14) holds}.

ii) Let (µ, α) ∈ Ω′ = {(µ, α) : µ ∈ M, α ∈ Ω′ (µ)}, hence α ∈ Ω′ (µ, S′) for some
S′ ∈ F ′µ. Then for S = S′ ∩ E ∈ Fµ and, since Ω′ (µ, S′) ⊆ Ω (µ, S), α ∈ Ω (µ, S) .
Therefore α ∈ Ω (µ). Also, the constraints (7.1)’ for (v, w) ∈ A′ ∪ S′ − A ∪ S ensure
that (7.14) is satisfied by α. Hence Ω′ ⊆ Γproj. Conversely, let (µ, α) ∈ Γproj. There
exists S ∈ Fµ such that α ∈ Ω (µ, S) and α satisfies (7.14). Then S′ = S ∪ {(v, w) ∈
E′ − E : αv ≤ αw} ∈ F ′µ and α ∈ Ω′ (µ, S′), hence α ∈ Ω′ (µ) and Γproj ⊆ Ω′.

The BJS-RT can therefore be formulated as follows:

Among all feasible selections in G′, find a selection (µ, S′) minimizing the length
of a longest path from σ to τ in (V µ, A′µ ∪ S′, d′).

7.5. The BJS-RT as an Instance of the CJS Model

As discussed in Section 6.4, the BJS-T can be formulated as an instance of the CJS
model. Hence, in order to formulate the BJS-RT in the CJS model it is sufficient to
show how to represent the additional conjunctive and disjunctive arcs introduced in
steps 1) to 3) in Section 7.4.2.

Arcs introduced in step 1) represent initial and final setup times. In order to
incorporate the initial setups, we update the duration ds(σ; o, k) to ∆.k

σo if ds(σ; o, k) <
∆.k
σo in the BJS-T instance, i.e. the duration is updated if the initial setup without

considering collision avoidance is smaller than ∆.k
σo. Similarly, update the duration

ds(o,m; τ) to ∆k.
oτ if ds(o,m; τ) < ∆k.

oτ in the BJS-T instance.

The collision avoidance arcs introduced in step 2) and 3) can be integrated in the
CJS model in a straightforward manner by specifying the set of conflicting transfer
steps V as follows.

120 7.6. COMPUTATIONAL RESULTS

For all o, o′ ∈ {oi, oi : i ∈ IR} where o and o′ are transfer steps of distinct transport
operations of a same job, assuming without loss of generality that o precedes o′,
for each k 6= k′, add {(o, k), (o′, k′)} to V and set both weights ds(o, k; o′, k′) =
ds(o′, k′; o, k) to ∆kk′

oo′ if k′ > k and to ∆k′k
o′o if k′ < k.

For all o, o′ ∈ {oi, oi : i ∈ IR} where o and o′ are transfer steps of distinct jobs,
and all k, k′ with 1 ≤ k < k′ ≤ K, add {(o, k), (o′, k′)} to V and set both weights
ds(o, k; o′, k′) = ds(o′, k′; o, k) to ∆kk′

oo′ .

As a result, the BJS-RT belongs to the class of CJS problems without time lags,
so the JIBLS can be applied.

7.6. Computational Results

The tabu search (with neighborhood N) described in Section 3.5 was implemented
single-threaded in Java for the BJS-RT. It was run on a PC with 3.1 GHz Intel Core
i5-2400 processor and 4 GB memory. Since the BJS-RT has not been addressed in
the literature, we created a test set of 80 instances starting from the standard job
shop instances la01 to la20 introduced by Lawrence [64] and adding data to describe
the transportation system.

For each Lawrence instance lapq and number of robots K = 1, . . . , 4, a BJS-RT
instance was generated as follows. The location of machine mi, i = 0, . . . , |M | − 1 is
ami = 120+50i, where |M | is the number of machines and i is the number attributed
by Lawrence. Initial and final locations of robot k = 1, . . . ,K are aσk = aτk =
40(k−1) and the maximum speed is vk = 10. The minimum distance between adjacent
robots is δ = 40, and the rail length is L = 120 + 50(|M | − 1) + δ(K − 1). Transfer
times are dt(i,mi; j, k) = dt(j, k; i,mi) = 10 for all i ∈ IM , j ∈ IR, r ∈ R, and loading
time dld(i,m) = 10 for all operations i ∈ Ifirst and unloading time dul(i,m) = 10 for
all i ∈ I last. Set-up times are ds(i,mi; j,mj) = 0 for distinct i, j ∈ IM with mi =
mj , and initial and final setup times are ds(σ; oi,m) = ds(σ; oi,m) = ds(oi,m; τ) =
ds(oi,m; τ) = 0 for all i ∈ IM .

With la01 to la20, the problem sizes in the test set are 10×5 (10 jobs on 5 machines),
15×5, 20×5 and 10×10. These sizes might appear modest at first glance, but should
be used with caution when comparing the BJS-RT for instance with the classical job
shop problem for which la01 to la20 were originally introduced. In a BJS-RT, an m×n
instance contains nearly twice the number of operations since for each job with m
(machining) operations, m− 1 transport operations are introduced. Moreover, there
are typically many collision avoidance constraints between the 2(m − 1)n transfer
steps. Finally, flexibility in choosing a robot further increases complexity.

The computation settings were chosen similarly as in the FBJSS, Chapter 5. The
initial solution was a permutation schedule generated by randomly choosing a job
permutation and a mode. For each instance, five independent runs with different
initial solutions were performed. The computation time of a run was limited to 1800
seconds. The following parameter values were chosen: maxt = 12, maxl = 300 and
maxiter = 3000

CHAPTER 7. THE BJS-RT 121

robots 1 robot 2 robots 3 robots 4 robots

instance best avg best avg best avg best avg

10× 5

la01 1736 1746 1315 1356 1155 1196 1108 1136

la02 1727 1727 1329 1353 1203 1222 1155 1171

la03 1695 1695 1262 1284 1089 1124 1044 1104

la04 1748 1749 1280 1299 1140 1165 1044 1089

la05 1654 1655 1251 1270 1111 1130 1057 1099

15× 5

la06 2465 2478 1899 1974 1726 1760 1655 1693

la07 2473 2496 1964 1990 1707 1764 1638 1659

la08 2483 2502 1912 1949 1748 1790 1675 1716

la09 2501 2520 2018 2056 1747 1813 1696 1718

la10 2529 2550 1968 2014 1777 1818 1692 1748

20× 5

la11 3381 3399 2640 2749 2349 2478 2424 2446

la12 3296 3326 2541 2696 2188 2251 2128 2262

la13 3335 3373 2624 2655 2364 2402 2192 2338

la14 3391 3419 2690 2823 2499 2604 2323 2433

la15 3353 3384 2723 2807 2385 2514 2216 2407

10× 10

la16 4664 4967 2907 3216 2652 2853 2392 2666

la17 4608 4776 3079 3340 2774 2968 2539 2826

la18 4655 4827 3304 3438 2699 2857 2476 2881

la19 4562 4683 3051 3299 2500 2757 2333 2662

la20 4710 4786 3019 3362 2736 2986 2360 2761

Table 7.1.: Best and average results over the five runs in the BJS-RT instances (time limit:

1800 seconds per run).

Table 7.1 provides detailed results. The first line splits the table into four groups
according to the number of robots. Columns best and avg refer to the best and average
results, respectively, of the five runs. The table is subdivided horizontally according
to size of the instances, e.g. the first block reports on instances 10 × 5 with 10 jobs
and 5 machines. We now discuss the results, evaluating solution quality, convergence
behavior of the tabu search and impact of increasing the number of robots.

Since the BJS-RT has not yet been addressed in publications, a comparison of
the obtained results with benchmarks was not possible. For this reason, we tried to
assess the quality of the tabu search with results obtained via a MIP model that we
derived from the disjunctive graph formulation. Instances la01 to la05 with 1 robot
have been solved to optimality with a MIP model implemented in LPL [54] using
the solver Gurobi 5.0 [46] and a time limit of five hours. However, with 2 robots, no
feasible solution could even be found for la01 to la05. We reduced the size of these
instances by keeping only the first six jobs (out of ten). These instances, called la01*
to la05*, were solved by Gurobi, after providing the best solution found by the tabu
search as an initial solution and allowing more computation time. Table 7.2 shows the
results obtained for the instances with 1 robot (left) and 2 robots (right). Columns
result give the optimal values or the upper and lower bounds (ub;lb) if optimality
could not be established. Columns time give the computation time in seconds used

122 7.6. COMPUTATIONAL RESULTS

1 robot MIP tabu search

instance result time best avg

la01 1736 3000 1736 1746

la02 (1727;1556) 18000 1727 1727

la03 1695 1638 1695 1695

la04 1748 7016 1748 1749

la05 (1654;1347) 18000 1654 1655

2 robots MIP tabu search

instance result time best avg

la01* 832 8840 832 835

la02* 864 51892 864 864

la03* 833 15636 833 833

la04* 823 13225 823 823

la05* 765 230228 765 765

Table 7.2.: MIP results and computation times compared to best and avg (average) results

over the five runs (time limit: 1800 seconds per run) of the tabu search in the

BJS-RT instances.

by Gurobi, and columns best and avg the results of the tabu search. The following
observations can be made. As is the case in other complex scheduling problems, only
small instances could be solved to optimality with a MIP approach and even finding a
feasible solution appears to be a challenge in multiple robot instances. Now comparing
the MIP and tabu search results, in all 10 instances, the best of the five runs reached
the MIP optimum or upper bound, and all five runs yield results that are as good or
very close. Albeit limited, these results suggest that the JIBLS performs adequately
in BJS-RT instances.

Further support is found by examining the evolution of attained solution quality
over computation time. For this purpose, the best makespan ω at the beginning
(initial solution) and during the execution of the tabu search were recorded for each
instance and run, and its (relative) deviation from the final solution (ω−ωfinal)/ωfinal

determined. Figure 7.6 illustrates these deviations for instances with 3 robots in an
aggregated way, depicting average deviations (in %) over runs and instances of the
same size. The following can be observed. Initial solutions are far from the obtained
final solutions, with makespans twice to three times as large. Also, most of the
improvements are found within minutes. Consider for example the 10× 10 instances
with 3 robots. While the deviation is initially 175.6%, it drops to 9.4% and 5.5% after
300 and 600 seconds.

Furthermore, we investigated the impact of adding a robot to the transport system.
Information of this type may be of interest at the design stage, when capacity is
calibrated or the benefit of installing additional equipment is assessed. We compared
each instance with K robots with the same instance with K−1 robots by determining
the relative change in the makespan (avgK−avgK−1)/avgK−1, where avgi, i = 1, . . . , 4,
can be found in Table 7.1, column avg of group i robots. Table 7.3 (left) reports
these changes in % in an aggregated way. As expected, adding a robot reduces the
makespan, and this return diminishes with the number of robots. Going from 1 to 2
robots (column 2 robots) reduces the makespan significantly, the range of the decrease
being 18% to 31%. Adding a third robot yields a decrease of 10% to 14%, and adding
a fourth robot, a decrease of 3% to 5%.

Finally, Table 7.3 (right) shows the number of tabu search iterations averaged over
instances of the same size. With increasing number of robots and problem size, the

CHAPTER 7. THE BJS-RT 123

10%

20%

30%

40%

50%

200 400 600 800 1000 1200 1400 1600 1800

160%

170%

180%

190%

rel. deviation

10× 5

15× 5

20× 5

10× 10

t

The points on the upper part of the vertical axis
show the relative deviations of the makespans at
the start (initial solutions).

10× 10

20× 5

15× 5

10× 5

Figure 7.6.: Relative deviations of the makespan from the final makespan during runtime.

size 2 robots 3 robots 4 robots

10× 5 -23.4% -11.1% -4.0%

15× 5 -20.4% -10.4% -4.6%

20× 5 -18.8% -10.8% -2.9%

10× 10 -30.7% -13.4% -4.3%

size 1 robot 2 robots 3 robots 4 robots

10× 5 632070 188973 153689 131235

15× 5 664216 102871 83026 70769

20× 5 429657 55872 48662 42766

10× 10 467584 44353 36383 33824

Table 7.3.: (Left) Relative changes in the makespan when adding a robot in the BJS-RT

instances. (Right) Number of tabu search iterations per run in the BJS-RT

instances.

124 7.7. FINDING FEASIBLE TRAJECTORIES

number of iterations drops drastically reflecting the increasing computation time per
iteration. This is due to an increase of the neighborhood size and to the fact that
the effort for generating a neighbor of type (3.3) is larger than for a neighbor of type
(3.4) - (3.5) (about twice as large in our implementation).

The computational results are concluded with Figure 7.7 which displays a schedule
with makespan 1155 for instance la01 with 3 robots. The transport operations are
not shown, but can be inferred from the trajectories of the robots.

7.7. Finding Feasible Trajectories

In this section, we develop efficient methods to find feasible trajectories x = (x(k, .),
k = 1, . . . , K) ∈ X (µ, α) given some feasible schedule (µ, α) ∈ Γproj. In Subsection
7.7.1, we build trajectories that make use of the variable speed (up to its maximum
vk) of each robot k. If all vk’s are equal, say v, it is possible to adapt the trajectories
so that a robot is either still (“stop”) or moves at speed v (“go”). In Subsection 7.7.2,
we show how to generate these so-called stop-and-go trajectories.

7.7.1. Trajectories with Variable Speeds

Finding feasible trajectories with minimum total travel distance is the problem of

minimizing
K∑
k=1

Q−1∑
p=1
|xk,p+1 − xkp| subject to constraints (7.7) to (7.10). It can be

expressed by the linear program

Minimize

K∑
k=1

Q−1∑
p=1

(y+
kp + y−kp) (7.17)

subject to

xk,p+1 − xkp ≤ (tp+1 − tp)vk for all k = 1, . . . ,K, p = 1, . . . , Q− 1, (7.18)

xkp − xk,p+1 ≤ (tp+1 − tp)vk for all k = 1, . . . ,K, p = 1, . . . , Q− 1, (7.19)

xkp − x∗ ≤ ap for all k = 1, . . . ,K, o ∈ Ok and p ∈ P[α(o), α(o) + d(o)], (7.20)

x∗ − xkp ≤ −ap for all k = 1, . . . ,K, o ∈ Ok and p ∈ P[α(o), α(o) + d(o)], (7.21)

xkp − xk+1,p ≤ −δ for all k = 1, . . . ,K − 1, p = 1, . . . , Q, (7.22)

x∗ − x1p ≤ 0 for all p = 1, . . . , Q, (7.23)

xKp − x∗ ≤ L for all p = 1, . . . , Q, (7.24)

x∗ = 0, (7.25)

xk,p+1 − xkp − y+
kp ≤ 0 for all k = 1, . . . ,K, p = 1, . . . , Q− 1, (7.26)

xkp − xk,p+1 − y−kp ≤ 0 for all k = 1, . . . ,K, p = 1, . . . , Q− 1, (7.27)

y+
kp ≥ 0, y−kp ≥ 0 for all k = 1, . . . ,K, p = 1, . . . , Q− 1. (7.28)

The above linear program is the dual of a minimum cost circulation problem. It can
be solved e.g. by a primal-dual algorithm for the minimum cost flow problem (see e.g.

CHAPTER 7. THE BJS-RT 125

50 100 150 200 250 300 350 400

t

x

50

100

150

200

250

300

350

400

1.1

1.3

1.5

1
.7

4.1

4.3

4
.5

5.1

5.3

5.5

6.1

6.3

6.5

6.7

10.1

10.3

10.5

10.7

r1

r2

r3

400 450 500 550 600 650 700 750

t

x

50

100

150

200

250

300

350

400

1.7

1.9

2.1

4.5

4.7

4.9

5.7

5.9

6.7

6.97.1

7.3

7
.5

8.1

9.1

9.3

9.5

9.7

9.9

10.9

800 850 900 950 1000 1050 1100 1150

t

x

50

100

150

200

250

300

350

400

2.3

2.5

2.7

2.9

3.1

3.3

3.5

3.7

3
.9

7.5

7.7

7.98.3

8.5

8.7

8.9

9.9

Figure 7.7.: A schedule with makespan 1155 of instance la01 with 3 robots.

126 7.7. FINDING FEASIBLE TRAJECTORIES

Cook et al. [26], pp. 92 and 115). However, optimal trajectories can be determined
more efficiently with the following algorithm based on geometric arguments.

Assume that the FTP at (π, α) has a feasible solution, and considerQ = {t1, . . . , tQ}
(see Section 7.4.1). At each tp, p = 1, . . . , Q, a given robot k is either required to
be at a fixed location, say akp, or there is no such requirement. For p = 1, . . . , Q,

let {ak(1)
p , . . . , a

k(qp)
p } be the set of fixed locations at tp over all robots (it is non-

empty as at least one robot is at a fixed location at tp), and for k = 1, . . . ,K, let
{akp(1), . . . , a

k
p(qk)} be the set of all fixed locations of k over all times.

Given k and tp, p ∈ {1, . . . , Q}, the following lower and upper bounds lkp and ukp
hold for the location x(k, tp) at tp:

lkp = max{(k − 1)δ; ak(q)
p + (k − k(q))δ : k(q) ≤ k, 1 ≤ q ≤ qp}

ukp = min{L− (K − k)δ; ak(q)
p − (k(q)− k)δ : k(q) ≥ k, 1 ≤ q ≤ qp}

Note that if k is at a fixed location akp, lkp = akp = ukp.

It is helpful to consider trajectories in the two-dimensional time-location space
with horizontal axis t and vertical axis x. In this space, a point will be denoted by
P = (t(P), x(P)), t(P), x(P) denoting the t- and x-coordinate of P . For any two
points P, P ′ where t(P) < t(P ′), [P, P ′] denotes the (line) segment joining P to P ′.
Its slope (x(P ′)−x(P))/(t(P ′)−t(P)) is denoted θ[P, P ′]. A point P ∗ is above (below)
the segment [P, P ′] if there is P ′′ ∈ [P, P ′] with t(P ′′) = t(P ∗) and x(P ′′) < x(P ∗),
(x(P ∗) < x(P ′′)). For any k, let F kq , q = 1, . . . , qk, be the fixed points, and Lkp and Ukp ,

p = 1, . . . , Q, the lower and upper points for the trajectory of k, i.e. t(F kq) = tp(q),

x(F kq) = akp(q), t(L
k
p) = t(Ukp) = tp, x(Lkp) = lkp and x(Ukp) = ukp. The following

algorithm constructs for each robot k a piecewise linear trajectory T k.

Trajectory algorithm

for k = 1, . . . ,K doTrajectory(k, T k) end

Subroutine Trajectory(k, T k)

T := ∪{[F kq , F kq+1], 1 ≤ q < qk}. No segment of T is scanned.

while not all segments of T are scanned do

Choose an unscanned [P, P ′] ∈ T , and scan [P, P ′] as follows:

if there exists some Lkp above [P, P ′] then

Determine θ∗ = max{θ[P,Lkp] : Lkp above [P, P ′]} and

Lkp∗ such that p∗ is the largest p with θ[P,Lkp] = θ∗.

T := T ∪ {[P,Lkp∗] ∪ [Lkp∗ , P
′]} − [P, P ′].

else if there exists some Ukp below [P, P ′] then

Determine θ∗ = min{θ[P,Ukp] : Ukp below [P, P ′]} and

Ukp∗ such that p∗ is the largest p with θ[P,Ukp] = θ∗.

T := T ∪ {[P,Ukp∗] ∪ [Ukp∗ , P
′]} − [P, P ′].

CHAPTER 7. THE BJS-RT 127

end if

end while

T k := T .

We illustrate some steps of the algorithm in the solution of the example that is
depicted in Figure 7.2 (on p. 110). We assume here that the rail length is 5. Consider
the two consecutive fixed points P = (6, 2) and P ′ = (13, 3) of crane 2. The segment
[P, P ′] and the lower and upper points of crane 2 that are between P and P ′ are
depicted in Figure 7.8 (a) by a thick line, symbols , and , respectively. The scan of
segment [P, P ′], illustrated in Figure 7.8 (b) and (c), is now described. There exists
lower points that are above the line of segment [P, P ′]. Indeed, L1, L2, L3 and L4 are
above the black line, see (b). Then, we determine for each of these points the slope
of the line going through the point and point P , see the red lines in (b), and take
among the points with the largest slope, the one latest in time. Here, this is point
L3. Then, we adjust the trajectory by replacing segment [P, P ′] by the two segments
[P,L3] and [L3, P ′], see (c). Note that no adjustments will be made when scanning
segment [P,L3] while segment [L3, P ′] will be adjusted as it has a lower point above
the line of the segment.

We now show that trajectories T̃ k, k = 1, . . . ,K, are feasible and discuss the time
complexity of the algorithm.

Theorem 28 The trajectories T k, k = 1, . . . ,K, are feasible and each T k is a min-
imum travel distance trajectory for k.

Proof. For any consecutive segments [P, P ′], [P ′, P ′′] ∈ T k, call T k concave at P ′

if P ′ is above [P, P ′′] and convex at P ′ if P ′ is below [P, P ′′]. We first show that at
any points that are not fixed points of k, T k is concave at a lower point and convex
at an upper point.

Indeed, suppose L′ is a lower point of T k (and not a fixed point). L′ became part of
the trajectory T in the subroutine Trajectory(k, T k) as a lower point L′ = Lkp∗ above

a segment [P, P ′] previously in T , with the property that any Lkp with t(P) ≤ t(Lkp) <

t(Lkp∗) is not above [P,Lkp∗], and any Lkp with t(Lkp∗) < t(Lkp) ≤ t(P ′) is below the line

containing [P,Lkp∗]. As a result, from then on and until completion of the subroutine,
for any t with t(P) ≤ t < t(L′), T is not above this line, T is on the line at t(L′),
and at any t with t(L′) < t ≤ t(P ′), T is below the line. Hence T k is concave at L′.
Similarly, one shows that T k is convex at any upper point that is not fixed.

Examining the constraints (7.3) to (7.6), we show now the feasibility of the trajec-
tories T k, k = 1, . . . ,K.

Suppose (7.3) does not hold. Then, letting [P, P ′] ∈ T k be a steepest segment of
T k (with maximum |θ[P, P ′]|),

|θ[P, P ′]| = |x(P ′)− x(P)|/(t(P ′)− t(P)) > vk. (7.29)

Assume θ[P, P ′] > 0. P cannot be lower and not fixed since T k is concave at such a
point and P ′ cannot be upper and not fixed since T k is convex at such a point. Hence

128 7.7. FINDING FEASIBLE TRAJECTORIES

6 7 8 9 10 11 12 13

t

x

1

2

3

4

5

P

P ′

(a)

6 7 8 9 10 11 12 13

t

x

1

2

3

4

5

P

P ′

L1 L2

L3 L4

(b)

6 7 8 9 10 11 12 13

t

x

1

2

3

4

5

P

P ′

L3

(c)

Figure 7.8.: A step in the trajectory algorithm.

CHAPTER 7. THE BJS-RT 129

P is upper or fixed and P ′ is lower or fixed, and P = (tp, u
k
p) and P ′ = (tp′ , l

k
p′) for some

tp , tp′ , 1 ≤ p < p′ ≤ Q. By (7.29), lkp′ −ukp > (tp′ − tp)vk, contradicting the feasibility

of the FTP, since lkp′ ≤ x(k, tp′), x(k, tp) ≤ ukp and x(k, tp′) − x(k, tp) ≤ (tp′ − tp)vk
hold for any feasible trajectory for k. The case θ[P, P ′] < 0 is similar.

Constraints (7.4) hold since for any transfer step of k with starting and completion
time, say, tp′ and tp′′ , at any tp with p′ ≤ p ≤ p′′, the trajectory of k is fixed (at
the location of the transfer step). Constraints (7.5) also hold. Indeed, for any k,
1 ≤ k < K, let trajectories T k and T k+1 be at some t at a minimal (x-) distance
from each other. By the concavity and convexity properties described above, we
may assume that at time t, T k is at a lower or fixed point, or T k+1 at an upper or
fixed point. In the first case, for p such that tp = t, T k is at point Lkp = (tp, l

k
p).

By definition of the lower bounds and feasibility of the FTP, lk+1
p − lkp ≥ δ, and by

construction of T k+1, lk+1
p is below or on T k+1, hence T k and T k+1 are at least at an

(x-) distance δ from each other. The second case is similar. Finally, (7.6) obviously
holds.

To show that each T k is a trajectory of minimum travel distance, it is enough
to observe that at any step of the subroutine Trajectory(k, T k), the total distance
traveled by T is a lower bound on the total travel distance of any feasible trajectory
for k.

Proposition 29 The trajectory algorithm runs in time O(K|IR|2).

Proof. Lower and upper bounds lkp and ukp can be computed in O(KQ) if one takes
into account that for any robot k and event p the closest fixed robot at p below
(above) k determines the lower bound lkp (upper bound ukp).

Now consider the runtime of the trajectory subroutine by estimating the number
of scanned segments and the effort spent for one scan.

As each segment is scanned exactly once, we estimate the number of segments
considered in a run. At the start, the number of segments is bounded by Q − 1. In
any scan of a segment, two new segments are added if some point Lkp∗ or Ukp∗ is found.

However, each point P of robot k can be selected at most in one scan as Lkp∗ or Ukp∗.
Therefore, at most 2Q new segments can be added to trajectory T , hence there are
at most 3Q segments considered in a run. The time spend for scanning a segment
[P, P ′] is bounded by the number of events in [P, P ′], hence the effort of a scan is
O(Q) and the effort of the subroutine is then O(Q2).

The subroutine is executed for all robots k = 1, . . . ,K, hence the overall effort is
O(KQ2), or O(K|IR|2), since Q ≤ 4|IR|. Note that this effort is smaller than that of
any generic min-cost flow algorithm since already the size of the network (number of
nodes) is KQ+ 1.

We also observe that in the “classical” case where a job is assumed to have at most
one machining operation on a given machine, this complexity can be related to the
number m of machines and the number n of jobs. Then |IR| ≤ (m − 1)n, and the
trajectory algorithm runs in time O(Km2n2).

130 7.7. FINDING FEASIBLE TRAJECTORIES

7.7.2. Stop-and-Go Trajectories

The trajectories T k, k = 1, . . . ,K, make use of the variable speed (up to its maximum
vk) of each robot k. If all vk’s are equal, say v, it is possible to adapt the trajectories

T k to trajectories T̃ k, k = 1, . . . ,K, with the following properties. A robot is either
still (“stop”) or moves at speed v (“go”) and switches between stop and go at most
once in any time interval [tp, tp+1], 1 ≤ p < Q, so that overall, the number of these
switches is less than Q. Moreover, the travel distance of each crane remains the same
as in T k, and is therefore minimal.

Let a point P ∈ T k be called a generating point of T k if P is an endpoint of
some segment [P, P ′] ⊆ T k. We will need the following property of the trajectories
T k, k = 1, . . . ,K.

Proposition 30 Let T k and T k+1 be two adjacent trajectories. i) If (t, x′) ∈ T k+1 is
a generating point of T k+1 and (t, x) ∈ T k is not a generating point of T k then (t, x′)
is upper or fixed. ii) If (t, x) ∈ T k is a generating point of T k and (t, x′) ∈ T k+1 is
not a generating point of T k+1 then (t, x) is lower or fixed.

Proof. Let (t, x′) ∈ T k+1 be a generating point of T k+1. Then t = tp for some p
and x′ = uk+1

p or x′ = lk+1
p or both. If (t, x′) is a lower point of T k+1, x′ = lk+1

p

and T k+1 is concave at (t, x′). As (t, x′) is lower, it is not fixed, so lk+1
p = lkp + δ. If

additionally, (t, x) ∈ T k is not a generating point of T k, and there is [P, P ′] ⊆ T k
and (tp, x) ∈ [P, P ′] such that t(P) < tp < t(P ′). Since the trajectories are feasible,
x ≥ lkp and x′−x ≥ δ. Hence x ≥ lk+1

p − δ = x′− δ so that x′−x = δ must hold. But

then, by the concavity of T k+1 at (t, x′), there is a (left or right) neighbor point of
(t, x′) in T k+1 at a distance smaller than δ from [P, P ′], contradicting the feasibility
of the trajectories. ii) is shown similarly.

Trajectories T̃ k, k = 1, . . . ,K, can be constructed with the following algorithm.

Stop-and-go trajectory algorithm

for each trajectory T k

T̃ k := ∅
for each segment [P, P ′] ⊆ T k

if θ[P, P ′] = 0 or |θ[P, P ′]| = v then T̃ k := T̃ k ∪ [P, P ′]

else if θ[P, P ′] > 0 then Up([P, P ′], T̃ k) else Down([P, P ′], T̃ k)

end for

end for

Subroutine Up([P, P ′], T̃ k)

P 3 := P ′

while P 3 6= P do

Determine the line L through P 3 with slope v.

Let point set P = {(tp, lkp) : t(P) ≤ tp < t(P 3) and tp < tp′ for (tp′ , l
k
p) ∈ L}.

CHAPTER 7. THE BJS-RT 131

Determine l∗ = max{x(P ′′) : P ′′ ∈ P} and let P 1 ∈ P be the first point in
time among all points in P at location l∗.

Determine the intersection point P 2 of L with the horizontal line through P 1.

T̃ k := T̃ k ∪ [P 1, P 2] ∪ [P 2, P 3]

P 3 := P 1

end while

Subroutine Down([P, P ′], T̃ k)

P 3 := P ′

while P 3 6= P do

Determine the line L through P 3 with slope −v.

Let point set P = {(tp, ukp) : t(P) ≤ tp < t(P 3) and tp < tp′ for (tp′ , u
k
p) ∈ L}.

Determine u∗ = min{x(P ′′) : P ′′ ∈ P} and let P 1 ∈ P be the first point in
time among all points in P at location u∗.

Determine the intersection point P 2 of L with the horizontal line through P 1.

T̃ k := T̃ k ∪ [P 1, P 2] ∪ [P 2, P 3]

P 3 := P 1

end while

We illustrate some steps of the algorithm in the solution of the example that is
depicted in Figure 7.2 (on p. 110). Consider the segment [P, P ′] with P = (6, 2), P ′ =
(11, 4) of the trajectory of crane 2. This segment and the lower bounds l2p with
6 ≤ tp ≤ 11 are depicted in Figure 7.9 (a) by a thick line and symbols , respectively.
As the crane moves up in this segment with a speed lower than its maximum speed,
we have to adjust the segment in subroutine Up as follows. The adjustments are
illustrated in Figure 7.9 (b)-(d). Introduce point P 3 and let [P, P 3] be the subsegment
of [P, P ′] we currently consider. Set P 3 := P ′ in the beginning. Then, we draw
line L through P 3 with slope v (red line in (b)). Then, consider all points (tp, l

2
p)

that are in time between P and P 3 and strictly left (earlier in time) of the point
on line L having the same location l2p, and call this set of points P. Here, P =
{(6, 2), (7, 2), (8, 2), (9, 3)}. Note that point (10, 3) /∈ P as this point lies on line L.
The highest location among the points in P is 3, hence l∗ = 3, and P 1 = (9, 3) is the
first point (in time) among all points in P at this location. Draw a horizontal line
through P 1 (blue line in (b)) and let P 2 be the intersection of this line with L. The

two segments [P 1, P 2] and [P 2, P 3] are now part of the trajectory T̃ k, [P 1, P 2] being
a “stop” segment and [P 2, P 3] a “go” segment. Point P 3 is reset to P 1 and the above
steps are re-executed, see (c), until P = P 3, see (d).

We now show that trajectories T̃ k, k = 1, . . . ,K, are feasible.

Proposition 31 For any [P, P ′] ⊆ T k and tp with t(P) ≤ tp ≤ t(P ′), lkp ≤ x ≤ ukp
holds for (tp, x) ∈ T̃ k.

Proof. Follows from the construction of T̃ k.

132 7.7. FINDING FEASIBLE TRAJECTORIES

6 7 8 9 10 11

t

x

1

2

3

4

P

P ′

(a)
6 7 8 9 10 11

t

x

1

2

3

4

P

P ′ = P 3

L

P 1 P 2

(b)

6 7 8 9 10 11

t

x

1

2

3

4

P = P 1

P ′

L

P 3

P 2

(c)
6 7 8 9 10 11

t

x

1

2

3

4

P = P 3

P ′

(d)

Figure 7.9.: A step in the stop-and-go algorithm.

CHAPTER 7. THE BJS-RT 133

Theorem 32 Trajectories T̃ k, k = 1, . . . ,K, are feasible.

Proof. Denote by δt the distance at time t of T k+1 from T k, i.e. δt = x′ − x where
(t, x) ∈ T k and (t, x′) ∈ T k+1, and by δ̃t the distance at time t of T̃ k+1 from T̃ k.

To establish the feasibility of T̃ k, k = 1, . . . ,K it is sufficient to prove δ̃t ≥ δ for
t1 ≤ t ≤ tQ (the other conditions being obviously fulfilled).

i) First, we prove δ̃t ≥ δ at a time t where a) (t, x′) ∈ T̃ k+1 is a generating point

of T k+1 or b) (t, x) ∈ T̃ k is a generating point of T k. If a) and b) hold, δ̃t = δt ≥ δ.
If a) and not b) hold, t = tp for some p and x′ = uk+1

p by Proposition 30. Also,

ukp = uk+1
p − δ and by Proposition 31, x ≤ ukp, hence δ̃t = x′ − x ≥ δ. If b) and not

a) hold, δ̃t ≥ δ is shown similarly.

ii) Now given any t, there are [P 1, P 2] ⊆ T k and [P 3, P 4] ⊆ T k+1 such that
t′ ≤ t ≤ t′′ where t′ = max{t(P 1), t(P 3)} and t′′ = min{t(P 2), t(P 4)}. We show that

δ̃t′t′′ = min{δ̃s : t′ ≤ s ≤ t′′} ≥ δ.
If θ[P 1, P 2] ≤ 0 and θ[P 3, P 4] ≥ 0, δ̃t′t′′ = δ̃t′ . Since at time t′, P ∈ T̃ k is a

generating point of T k or P ′′ ∈ T̃ k+1 is a generating point of T k+1, δ̃t′ ≥ δ by i),

hence δ̃t′t′′ ≥ δ. The case θ[P 1, P 2] > 0 and θ[P 3, P 4] ≤ 0 is similar.

If θ[P 1, P 2] ≥ 0 and θ[P 3, P 4] ≥ 0, either δ̃t′t′′ is attained at time t′ or at t′′,

in which case δ̃t′t′′ ≥ δ (see above), or it is attained at some s, t′ < s < t′′, where

P̃ = (s, x) ∈ T̃ k and [P̃ , P̃ ′] ⊆ T̃ k is a horizontal (“stop”) segment. Then, s = tp
and x = lkp for some p. Moreover, lk+1

p = lkp + δ and by Proposition 31, x′ ≥ lk+1
p for

(s, x′) ∈ T̃ k+1, hence δ̃t′t′′ = x′ − x ≥ δ. The case θ[P 1, P 2] ≤ 0 and θ[P 3, P 4] ≤ 0 is
similar.

Remark 33 The trajectories T̃ k, k = 1, . . . ,K, are latest move-time trajectories. It
is easy to devise a version of the stop-and-go trajectory algorithm where each robot
moves as early as possible.

The discussion on finding feasible trajectories is concluded with two figures showing
stop-and-go trajectories. Figures 7.10 and 7.11 depict the same schedules as Figures
7.2 and 7.7, but now with stop-and-go trajectories.

134 7.7. FINDING FEASIBLE TRAJECTORIES

4 8 12 16 20 24 28

t

x

r1

r2
1

2

3

4

1.1

1.3

1.5

2.1

2.3

2.5

3.1

3.3

3.5

Figure 7.10.: A solution of the BJS-RT example with stop-and-go trajectories.

CHAPTER 7. THE BJS-RT 135

50 100 150 200 250 300 350 400

t

x

50

100

150

200

250

300

350

400

1.1

1.3

1.5

1
.7

4.1

4.3

4
.5

5.1

5.3

5.5

6.1

6.3

6.5

6.7

10.1

10.3

10.5

10.7

r1

r2

r3

400 450 500 550 600 650 700 750

t

x

50

100

150

200

250

300

350

400

1.7

1.9

2.1

4.5

4.7

4.9

5.7

5.9

6.7

6.97.1

7.3

7
.5

8.1

9.1

9.3

9.5

9.7

9.9

10.9

800 850 900 950 1000 1050 1100 1150

t

x

50

100

150

200

250

300

350

400

2.3

2.5

2.7

2.9

3.1

3.3

3.5

3.7

3
.9

7.5

7.7

7.98.3

8.5

8.7

8.9

9.9

Figure 7.11.: A schedule with makespan 1155 of instance la01 with 3 robots and stop-and-
go trajectories.

CHAPTER 8

CONCLUSION

Starting in 1954 with the seminal article on the flow shop problem by Johnson [55],
scheduling has become a major field in Operations Research over the last fifty years,
and has attracted a large number of researchers.

Potts and Strusevich mentioned in 2009 in their article “Fifty years of scheduling:
a survey of milestones” [98]: “Scheduling research carried out during the current,
fifth decade is diverse in nature. Thus, it is difficult to detect strong themes that
have attracted most attention. Even though many researchers were motivated by
the need to create scheduling models that capture more of the features that arise in
practice, the enhancements to classical scheduling models cannot be embedded into
a unified framework.” And they conclude: “At the end of this decade, scheduling
had become much more fragmented. A large number of researchers were working in
the area but seemingly on a huge variety of problems and adopting a multitude of
different approaches. In spite of the vast body of research being produced, a large
gap remains between theory and practice.”

Following the philosophy of former work, e.g. by Gröflin and Klinkert [42, 43],
Klinkert [62] and Pham [92], this thesis aimed at contributing to narrow the gap
between theory and practice in scheduling problems of the job shop type. We first
summarize what we believe to be the main contributions and then point to future
research appearing of interest in our eyes.

We proposed a general model called Complex Job Shop (CJS) capturing a broad
variety of practical features, and developed a comprehensive formulation in a general
disjunctive graph, which is of a more complex structure than disjunctive graphs for
the classical job shop.

We then presented a general solution method called Job Insertion Based Local
Search (JIBLS), which can be used for most CJS problems. A key component of the
JIBLS is the generation of feasible neighbors, where typically a critical operation is
moved together with some other operations whose moves are “implied”. The moves
are defined and generated in the framework of job insertion with local flexibility.

We evaluated the CJS model and the JIBLS solution method by tailoring and
applying them to a selection of complex job shop problems. Some of these problems

138

are well-known in the literature, while the others are new. In the well-known problems,
i.e. the Flexible Job Shop with Setup Times, the Job Shop with Transportation and
the Blocking Job Shop, the JIBLS provides good results when compared to the state
of the art. In the new problems, i.e. the Flexible Blocking Job Shop with Transfer and
Setup Times, the Blocking Job Shop with Transportation and the Blocking Job Shop
with Rail-Bound Transportation (BJS-RT), the JIBLS establishes first benchmarks.
Altogether, the results obtained support the validity of our approach.

The BJS-RT deserves special mention. In this problem, not only machine (robot)
assignments and starting times must be specified as in a usual scheduling problem,
but also feasible trajectories of the robots must be determined. A projection of the
solution space of the BJS-RT onto the space of the assignment and starting time
variables yields a disjunctive graph formulation of the BJS-RT as a CJS. In addition,
efficient algorithms solve the feasible trajectory problem.

As future work directions, we see further applications of the CJS model and the
JIBLS solution method, extensions of the model, and extensions of the solution
method.

First, the complex job shop landscape given in Figure 1.12 suggests applying and
tailoring the CJS model and the JIBLS to the Flexible No-Wait Job Shop with Setup
Times (FNWJSS). The No-Wait Job Shop with Transportation (NWJS-T), which
can be seen as a special FNWJSS, is also of interest as no-wait constraints arise
in various settings with transportation, e.g. in electroplating plants [66, 89] and in
robotic cells [2, 30].

Second, from an application perspective, addressing more general structures of a job
would be valuable. For example, the assembly job shop, where a job is a (converging
or diverging) arborescence of operations, is common in practice, typically occurring
when components are assembled into a final product. It is also worthwhile to further
study job shop scheduling problems with transportation where the robots interfere in
their movements. The approach taken for the derivation of the disjunctive graph for-
mulation in the BJS-RT can be used in other cases by changing the relaxed scheduling
problem, for example substituting the BJS-T with the JS-T if sufficient buffer space is
available, or changing the characteristics of the transportation system (e.g. a carousel
instead of a rail line), and accordingly, the corresponding feasible trajectory problem.
While the first change is straightforward, the second raises interesting opportunities
from both a research and application perspective.

Third, additional work is needed in CJS problems with general time lags. While
problems with specific time lags possessing the Short Cycle Property (SCP) may
be found and solved with the JIBLS, a method applicable to problems with general
time lags would be valuable. Finally, in the JIBLS, neighbors are generated by local
“changes”. Considering a larger neighborhood, where a job is extracted and re-
inserted in an optimal fashion would be interesting. This mechanism, known as
optimal job insertion, is not only valuable in local search but also in the construction
of an initial schedule or when scheduling is done in a rolling fashion, inserting a job
at its arrival into the current schedule. As the optimal job insertion problem is non-
trivial in many complex job shop problems, it would be interesting to find methods
that insert a job in a “near-optimal” way.

BIBLIOGRAPHY

[1] J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for job
shop scheduling. Management Science, 34(3):391–401, 1988.

[2] A. Agnetis. Scheduling no-wait robotic cells with two and three machines.
European Journal of Operational Research, 123(2):303–314, June 2000.

[3] A. Allahverdi, C. Ng, T. Cheng, and M. Kovalyov. A survey of scheduling
problems with setup times or costs. European Journal of Operational Research,
187(3):985–1032, June 2008.

[4] D. Applegate and W. Cook. A computational study of the job-shop scheduling
problem. ORSA Journal on Computing, 3(2):149–156, 1991.

[5] I. Aron, L. Genç-Kaya, I. Harjunkoski, S. Hoda, and J. Hooker. Factory crane
scheduling by dynamic programming. In R. K. Wood and R. F. Dell, editors,
Operations Research, Computing and Homeland Defense (ICS 2011 Proceed-
ings), pages 93–107. INFORMS, 2010.

[6] C. Artigues and D. Feillet. A branch and bound method for the job-shop
problem with sequence-dependent setup times. Annals of Operations Research,
159(1):135–159, 2008.

[7] K. R. Baker and D. Trietsch. Principles of Sequencing and Scheduling. Wiley,
2009.

[8] E. Balas. Machine sequencing via disjunctive graphs: an implicit enumeration
algorithm. Operations Research, 17(6), 1969.

[9] E. Balas, N. Simonetti, and A. Vazacopoulos. Job shop scheduling with setup
times, deadlines and precedence constraints. Journal of Scheduling, 11(4):253–
262, 2008.

[10] U. Bilge and G. Ulusoy. A time window approach to simultaneous scheduling
of machines and material handling system in an FMS. Operations Research,
43(6):1058–1070, 1995.

[11] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz. Handbook on
Scheduling: From Theory to Applications. Springer, 2007.

140 Bibliography

[12] P. Brandimarte. Routing and scheduling in a flexible job shop by tabu search.
Annals of Operations Research, 41:157–183, 1993.

[13] C. A. Brizuela, Y. Zhao, and N. Sannomiya. No-wait and blocking job-shops:
challenging problems for GA’s. In IEEE international conference on systems,
man, and cybernetics, pages 2349–2354, 2001.

[14] P. Brucker, E. K. Burke, and S. Groenemeyer. A branch and bound algorithm
for the cyclic job-shop problem with transportation. Computers & Operations
Research, 39(12):3200–3214, Dec. 2012.

[15] P. Brucker, S. Heitmann, J. Hurink, and T. Nieberg. Job-shop scheduling with
limited capacity buffers. OR Spectrum, 28(2):151–176, 2006.

[16] P. Brucker and T. Kampmeyer. Cyclic job shop scheduling problems with block-
ing. Annals of Operations Research, 159(1):161–181, 2008.

[17] P. Brucker and S. Knust. Complex Scheduling. Springer, 2nd edition, 2011.

[18] P. Brucker and C. Strotmann. Local search procedures for job-shop problems
with identical transport robots. In Eight International Workshop on Project
Management and Scheduling, Valencia (Spain), 2002.

[19] P. Brucker and O. Thiele. A branch & bound method for the general-shop
problem with sequence dependent setup-times. OR Spectrum, 18(3):145–161,
1996.

[20] R. Bürgy and H. Gröflin. Optimal job insertion in the no-wait job shop. Journal
of Combinatorial Optimization, 26(2):345–371, 2013.

[21] R. Bürgy and H. Gröflin. The blocking job shop with rail-bound transportation.
Journal of Combinatorial Optimization, 2014. Published Online First. March
7, 2014. doi: 10.1007/s10878-014-9723-3.

[22] J. R. Callahan. The Nothing Hot Delay Problems in the Production of Steel.
PhD thesis, University of Toronto, Canada, 1971.

[23] J. Chambers and J. Barnes. Reactive search for flexible job shop scheduling.
Technical report, University of Texas at Austin, Austin, 1997.

[24] R. B. Chase, F. R. Jacobs, and N. J. Aquilano. Operations & Supply Manage-
ment. McGraw-Hill, New York, 12th edition, 2008.

[25] A. Che and C. Chu. Cyclic hoist scheduling in large real-life electroplating lines.
OR Spectrum, 29(3):445–470, May 2006.

[26] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combi-
natorial Optimization. Wiley-Interscience, 1997.

[27] Y. Crama and V. Kats. Cyclic scheduling in robotic flowshops. Annals of
Operations Research, 96(1-4):97–124, 2000.

[28] Y. Crama and J. V. D. Klundert. Cyclic scheduling of identical parts in a
robotic cell. Operations Research, 45(6):952–965, 1997.

[29] S. Dauzère-Pérès and J. Paulli. An integrated approach for modeling and solv-
ing the general multiprocessor job-shop scheduling problem using tabu search.
Annals of Operations Research, 70:281–306, 1997.

[30] M. Dawande, H. N. Geismar, S. P. Sethi, and C. Sriskandarajah. Sequencing
and scheduling in robotic cells: recent developments. Journal of Scheduling,

Bibliography 141

8(5):387–426, Oct. 2005.

[31] L. Deroussi, M. Gourgand, and N. Tchernev. A simple metaheuristic approach
to the simultaneous scheduling of machines and automated guided vehicles.
International Journal of Production Research, 46(8):2143–2164, Apr. 2008.

[32] F. Focacci, P. Laborie, and W. Nuijten. Solving scheduling problems with setup
times and alternative resources. In Proceedings of the 5th International Con-
ference on Artificial Intelligence Planning and Scheduling, volume scheduling,
pages 92–101, 2000.

[33] G. Galante and G. Passannanti. Minimizing the cycle time in serial manu-
facturing systems with multiple dual-gripper robots. International Journal of
Production Research, 44(4):639–652, Feb. 2006.

[34] J. Gao, L. Sun, and M. Gen. A hybrid genetic and variable neighborhood descent
algorithm for flexible job shop scheduling problems. Computers & Operations
Research, 35:2892–2907, 2008.

[35] H. Geismar, C. Sriskandarajah, and N. Ramanan. Increasing throughput for
robotic cells with parallel machines and multiple robots. IEEE Transactions on
Automation Science and Engineering, 1(1):84–89, July 2004.

[36] H. N. Geismar, M. Pinedo, and C. Sriskandarajah. Robotic cells with paral-
lel machines and multiple dual gripper robots: a comparative overview. IIE
Transactions, 40(12):1211–1227, Oct. 2008.

[37] F. W. Glover. Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research, 13(5):533–549, 1986.

[38] F. W. Glover and M. Laguna. Tabu search. Kluwer, Boston, 1997.

[39] F. W. Glover, E. Taillard, and D. de Werra. A user’s guide to tabu search.
Annals of Operations Research, 41(1):3–28, 1993.

[40] V. Gondek. Hybrid Flow-Shop Scheduling mit verschiedenen Restriktionen:
Heuristische Lösung und LP-basierte untere Schranken. Phd thesis, Universität
Duisburg-Essen, 2011.

[41] M. A. González, C. R. Vela, and R. Varela. An efficient memetic algorithm for
the flexible job shop with setup times. Twenty-Third International Conference
on Automated Planning and Scheduling, 2013.

[42] H. Gröflin and A. Klinkert. Feasible insertions in job shop scheduling, short
cycles and stable sets. European Journal of Operational Research, 177(2):763–
785, 2007.

[43] H. Gröflin and A. Klinkert. A new neighborhood and tabu search for the block-
ing job shop. Discrete Applied Mathematics, 157(17):3643–3655, 2009.

[44] H. Gröflin and D. N. Pham. The flexible blocking job shop with transfer and
set-up times. Technical report, University of Fribourg, Fribourg, 2008.

[45] H. Gröflin, D. N. Pham, and R. Bürgy. The flexible blocking job shop with
transfer and set-up times. Journal of Combinatorial Optimization, 22(2):121–
144, 2011.

[46] Gurobi Optimization. Gurobi Optimizer reference manual, retrieved August 13,
2013, from http://www.gurobi.com/documentation/5.5/reference-manual/.

142 Bibliography

[47] N. Hall and C. Sriskandarajah. A survey of machine scheduling problems with
blocking and no-wait in process. Operations Research, 44(3):510–525, 1996.

[48] N. G. Hall, H. Kamoun, and C. Sriskandarajah. Scheduling in robotic cells:
classification, two and three machine cells. Operations Research, 45(3):421–439,
May 1997.

[49] S. Heitmann. Job-shop scheduling with limited buffer capacities. PhD thesis,
Universität Osnabrück, 2007.

[50] A. Hertz, Y. Mottet, and Y. Rochat. On a scheduling problem in a robotized
analytical system. Discrete Applied Mathematics, 65(13):285–318, 1996.

[51] A. Hmida, M. Haouari, M. Huguet, and P. Lopez. Discrepancy search for
the flexible job shop scheduling problem. Computers & Operations Research,
37:2192–2201, 2010.

[52] J. Hurink, B. Jurisch, and M. Thole. Tabu search for the job-shop scheduling
problem with multi-purpose machines. OR Spektrum, pages 205–215, 1994.

[53] J. Hurink and S. Knust. Tabu search algorithms for job-shop problems with a
single transport robot. European Journal of Operational Research, 162(1):99–
111, 2005.

[54] T. Hürlimann. Reference manual of LPL. Retrieved August 13, 2013, from
http://www.virtual-optima.com/download/docs/manual.pdf.

[55] S. M. Johnson. Optimal two- and three-stage production schedules with setup
times included. Naval Research Logistics Quarterly, 1(1):61–68, 1954.

[56] G. E. Khayat, A. Langevin, and D. Riopel. Integrated production and material
handling scheduling using mathematical programming and constraint program-
ming. European Journal of Operational Research, 175(3):1818–1832, Dec. 2006.

[57] B. Khosravi, J. Bennell, and C. Potts. Train scheduling and rescheduling in the
UK with a modified shifting bottleneck procedure. In D. Delling and L. Liberti,
editors, ATMOS, pages 120–131, Dagstuhl, Germany, 2012. OASICS.

[58] K. Kim and K. Kim. An optimal routing algorithm for a transfer crane in port
container terminals. Transportation Science, 33(1):17–33, 1999.

[59] T. Kis. Insertion Techniques for Job Shop Scheduling. Phd thesis, EPFL, 2001.

[60] T. Kis. Job-shop scheduling with processing alternatives. European Journal of
Operational Research, 151(2):307–332, Dec. 2003.

[61] T. Kis and A. Hertz. A lower bound for the job insertion problem. Discrete
Applied Mathematics, 128:395–419, 2003.

[62] A. Klinkert. Optimierung automatisierter Kompaktlager in Entwurf und
Steuerung. PhD thesis, University of Fribourg, 2001.

[63] P. Lacomme, M. Larabi, and N. Tchernev. Job-shop based framework for simul-
taneous scheduling of machines and automated guided vehicles. International
Journal of Production Economics, 143(1):24–34, July 2010.

[64] S. Lawrence. Supplement to resource constrained project scheduling: an experi-
mental investigation of heuristic scheduling techniques. GSIA, Carnegie Mellon
University, Pittsburgh, PA, 1984.

Bibliography 143

[65] J. K. Lenstra and A. Rinnooy Kan. Computational complexity of discrete
optimization problems. Annals of Discrete Mathematics, 4:121–140, 1979.

[66] J. M. Y. Leung and E. Levner. An efficient algorithm for multi-hoist cyclic
scheduling with fixed processing times. Operations Research Letters, 34(4):465–
472, July 2006.

[67] J. M. Y. Leung and G. Zhang. Optimal cyclic scheduling for printed circuit
board production lines with multiple hoists and general processing sequence.
IEEE Transactions on Robotics and Automation, 19(3):480–484, June 2003.

[68] J. M. Y. Leung, G. Zhang, X. Yang, R. Mak, and K. Lam. Optimal cyclic multi-
hoist scheduling: a mixed integer programming approach. Operations Research,
52(6):965–976, Nov. 2004.

[69] W. Li, Y. Wu, M. Petering, M. Goh, and R. de Souza. Discrete time model and
algorithms for container yard crane scheduling. European Journal of Operational
Research, 198(1):165–172, Oct. 2009.

[70] R. W. Lieberman and I. B. Turksen. Two-operation crane scheduling problems.
IIE Transactions, 14(3):147–155, 1982.

[71] S. Liu and E. Kozan. Scheduling trains with priorities: a no-wait blocking
parallel-machine job-shop scheduling model. Transportation Science, 45(2):175–
198, 2011.

[72] R. Logendran and A. Sonthinen. A tabu search-based approach for schedul-
ing job-shop type flexible manufacturing systems. Journal of the Operational
Research Society, 48(3):264–277, Dec. 1997.

[73] M.-A. Manier and C. Bloch. A classification for hoist scheduling problems.
International Journal of Flexible Manufacturing Systems, 15(1):37–55, 2003.

[74] M.-A. Manier, C. Varnier, and P. Baptiste. Constraint-based model for
the cyclic multi-hoists scheduling problem. Production Planning & Control,
11(3):244–257, Jan. 2000.

[75] A. Manne. On the job-shop scheduling problem. Operations Research, 8(2):219–
223, 1960.

[76] A. Mascis and D. Pacciarelli. Machine scheduling via alternative graphs. Tech-
nical report, Università degli Studi Roma Tre, Rome, 2000.

[77] A. Mascis and D. Pacciarelli. Job-shop scheduling with blocking and no-wait
constraints. European Journal of Operational Research, 143(3):498–517, 2002.

[78] S. J. Mason, J. W. Fowler, and W. Matthew Carlyle. A modified shifting bot-
tleneck heuristic for minimizing total weighted tardiness in complex job shops.
Journal of Scheduling, 5(3):247–262, May 2002.

[79] M. Mastrolilli and L. Gambardella. Effective neighbourhood functions for the
flexible job shop problem. Journal of Scheduling, 3(1):3–20, 2000.

[80] C. Meloni, D. Pacciarelli, and M. Pranzo. A rollout metaheuristic for job shop
scheduling problems. Annals of Operations Research, 131(1):215–235, 2004.

[81] A. Narasimhan and U. Palekar. Analysis and algorithms for the transtainer
routing problem in container port operations. Transportation Science, 36(1):63–
78, 2002.

144 Bibliography

[82] W. Ng. Crane scheduling in container yards with inter-crane interference. Eu-
ropean Journal of Operational Research, 164(1):64–78, July 2005.

[83] W. Ng and K. Mak. Yard crane scheduling in port container terminals. Applied
Mathematical Modelling, 29(3):263–276, Mar. 2005.

[84] E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job shop
problem. Management Science, 42(6):797–813, 1996.

[85] A. Oddi, R. Rasconi, A. Cesta, and S. Smith. Applying iterative flattening
search to the job shop scheduling problem with alternative resources and se-
quence dependent setup times. ICAPS Workshop on Constraint Satisfaction
Techniques for Planning and Scheduling Problems, 2011.

[86] A. Oddi, R. Rasconi, A. Cesta, and S. F. Smith. Solving job shop scheduling
with setup times through constraint-based iterative sampling: an experimental
analysis. Annals of Mathematics and Artificial Intelligence, 62(3-4):371–402,
Aug. 2011.

[87] A. Oddi, R. Rasconi, A. Cesta, and S. F. Smith. Iterative improvement algo-
rithms for the blocking job shop. In Twenty-Second International Conference
on Automated Planning and Scheduling, 2012.

[88] D. Pacciarelli and M. Pranzo. A tabu search algorithm for the railway scheduling
problem. In 4th Metaheuristics International Conference, pages 159–164, 2001.

[89] H. J. Paul, C. Bierwirth, and H. Kopfer. A heuristic scheduling procedure for
multi-item hoist production lines. International Journal of Production Eco-
nomics, 105(1):54–69, Jan. 2007.

[90] B. Peterson, I. Harjunkoski, S. Hoda, and J. N. Hooker. Scheduling multiple
factory cranes on a common track. Technical report, Carnegie Mellon University,
Pittsburgh, 2012.

[91] F. Pezzella and E. Merelli. A tabu search method guided by shifting bottleneck
for the job shop scheduling problem. European Journal of Operational Research,
120(2):297–310, Jan. 2000.

[92] D. N. Pham. Complex Job Shop Scheduling: Formulations, Algorithms and a
Healthcare Application. PhD thesis, University of Fribourg, 2008.

[93] D. N. Pham and A. Klinkert. Surgical case scheduling as a generalized job shop
scheduling problem. European Journal of Operational Research, 185(3):1011–
1025, Mar. 2008.

[94] L. W. Phillips and P. S. Unger. Mathematical programming solution of a hoist
scheduling program. AIIE Transactions, 8(2):219–225, 1976.

[95] M. L. Pinedo. Planning and Scheduling in Manufacturing and Services.
Springer, 2nd edition, 2009.

[96] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, 4th
edition, 2012.

[97] J. Poppenborg, S. Knust, and J. Hertzberg. Online scheduling of flexible job-
shops with blocking and transportation. European Journal of Industrial Engi-
neering, 6(4):497–518, 2012.

Bibliography 145

[98] C. N. Potts and V. A. Strusevich. Fifty years of scheduling: a survey of mile-
stones. Journal of the Operational Research Society, 60:S41–S68, May 2009.

[99] M. Pranzo and D. Pacciarelli. An iterated greedy metaheuristic for the blocking
job shop scheduling problem. Technical Report 2, Università degli Studi Roma
Tre, Rome, Italy, 2013.

[100] W. Raaymakers and J. Hoogeveen. Scheduling multipurpose batch process in-
dustries with no-wait restrictions by simulated annealing. European Journal of
Operational Research, 126(1):131–151, 2000.

[101] A. Rossi and G. Dini. Flexible job-shop scheduling with routing flexibility
and separable setup times using ant colony optimisation method. Robotics and
Computer-Integrated Manufacturing, 23(5):503–516, 2007.

[102] P. Schönsleben. Integrales Logistikmanagement: Operations und Supply Chain
Management innerhalb des Unternehmens und unternehmensübergreifend.
Springer, 6th edition, 2011.

[103] S. Sethi, C. Sriskandarajah, S. G, J. Blazewicz, and K. W. Sequencing of parts
and robot moves in a robotic cell. International Journal of Flexible Manufac-
turing Systems, 4(3-4):331–358, 1992.

[104] G. W. Shapiro and H. L. W. Nuttle. Hoist scheduling for a PCB electroplating
facility. IIE Transactions, 20(2):157–167, 1988.

[105] J. Smith, B. Peters, and A. Srinivasan. Job shop scheduling considering material
handling. International Journal of Production Research, 37(7):1541–1560, 1999.

[106] F. Sourd and W. Nuijten. Scheduling with tails and deadlines. Journal of
Scheduling, 2001.

[107] K. Stecke. Design, planning, scheduling, and control problems of flexible man-
ufacturing systems. Annals of Operations Research, 3:3–12, 1985.

[108] W. J. Stevenson. Operations Management. McGraw-Hill, 11th edition, 2012.

[109] L. Tang, X. Xie, and J. Liu. Scheduling of a single crane in batch annealing
process. Computers & Operations Research, 36(10):2853–2865, Oct. 2009.

[110] H. W. Thornton and J. L. Hunsucker. A new heuristic for minimal makespan
in flow shops with multiple processors and no intermediate storage. European
Journal of Operational Research, 152(1):96–114, Jan. 2004.

[111] J. J. J. van den Broek. MIP-based Approaches for Complex Planning Problems.
PhD thesis, Technische Universiteit Eindhoven, 2009.

[112] C. R. Vela, R. Varela, and M. A. González. Local search and genetic algorithm
for the job shop scheduling problem with sequence dependent setup times. Jour-
nal of Heuristics, 16:139–165, 2010.

[113] F. Werner and A. Winkler. Insertion techniques for the heuristic solution of the
job shop problem. Discrete Applied Mathematics, 58(2):191–211, 1995.

[114] M. Wiedmer. Ein Modellierungstool für Job Shop Scheduling Probleme. Bach-
elorarbeit, Universität Freiburg, 2012.

[115] Q. Zhang, H. Manier, and M.-A. Manier. A modified shifting bottleneck heuris-
tic and disjunctive graph for job shop scheduling problems with transportation
constraints. Int. Journal of Production Research, 52(4):985–1002, 2014.

	Introduction
	Scheduling
	Some Scheduling Activities in Practice
	Scheduling in Production Planning and Control
	Project Scheduling
	Workforce Scheduling
	Scheduling Reservations and Appointments
	Pricing and Revenue Management

	Some Generic Scheduling Problems
	The Resource-Constrained Project Scheduling Problem
	The Machine Scheduling Problem
	The Classical Job Shop Scheduling Problem

	Extensions of the Classical Job Shop
	Setup Times
	Release Times and Due Dates
	Limited Number of Buffers and Transfer Times
	Time Lags and No-Wait
	Routing Flexibility
	Transports

	Overview of the Thesis

	Complex Job Shop Scheduling
	Modeling Complex Job Shops
	Introduction
	Some Formulations of the Classical Job Shop
	A Disjunctive Programming Formulation
	A Mixed Integer Linear Programming Formulation
	A Disjunctive Graph Formulation
	An Example

	A Generalized Scheduling Model
	A Disjunctive Programming Formulation
	A Disjunctive Graph Formulation

	A Complex Job Shop Model (CJS)
	Building Blocks of the CJS Model and a Problem Statement
	Notation and Data
	A Disjunctive Graph Formulation
	An Example
	Modeling Features in the CJS Model

	A Solution Approach
	Introduction
	The Local Search Principle
	The Local Search Principle in the Example
	The Job Insertion Graph with Local Flexibility

	Structural Properties of Job Insertion
	The Short Cycle Property
	The Conflict Graph and the Fundamental Theorem
	A Closure Operator

	Neighbor Generation
	Non-Flexible Neighbors
	Flexible Neighbors
	A Neighborhood

	The Job Insertion Based Local Search (JIBLS)
	From Local Search to Tabu Search
	The Tabu Search in the JIBLS

	The JIBLS in a Selection of CJS Problems
	The Flexible Job Shop with Setup Times (FJSS)
	Introduction
	A Literature Review
	A Problem Formulation
	The FJSS as an Instance of the CJS Model
	A Compact Disjunctive Graph Formulation
	Specifics of the Solution Approach
	The Closure Operator
	Feasible Neighbors by Single Reversals
	Critical Blocks

	Computational Results

	The Flexible Blocking Job Shop with Transfer and Setup Times (FBJSS)
	Introduction
	A Literature Review
	A Problem Formulation
	The FBJSS as an Instance of the CJS Model
	Computational Results
	From No-Buffers to Limited Buffer Capacity

	Transportation in Complex Job Shops
	Introduction
	A Literature Review
	The Job Shop with Transportation (JS-T)
	A Problem Formulation
	Computational Results

	The Blocking Job Shop with Transportation (BJS-T)
	A Problem Formulation
	Computational Results

	The Blocking Job Shop with Rail-Bound Transportation (BJS-RT)
	Introduction
	Notation and Data
	A First Problem Formulation
	The Flexible Blocking Job Shop Relaxation
	Schedules with Trajectories

	A Compact Problem Formulation
	The Feasible Trajectory Problem
	Projection onto the Space of Schedules

	The BJS-RT as an Instance of the CJS Model
	Computational Results
	Finding Feasible Trajectories
	Trajectories with Variable Speeds
	Stop-and-Go Trajectories

	Conclusion
	Bibliography

